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Today’s objectives

• Intro to BEAST2 

• Node dating using BEAST2
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Recap
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How do we find the ‘best’ tree?
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It depends how you measure ‘best’
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Method Criterion (tree score)

Maximum parsimony Minimum number of changes

Maximum likelihood
Likelihood score (probability), optimised over branch lengths 
and model parameters

Bayesian inference
Posterior probability, integrating over branch lengths and 
model parameters 

Both maximum likelihood and Bayesian inference are model-based approaches 
 
Note these are not the only approaches to tree-building but they are the most widely used



Bayesian divergence time estimation
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We use a Bayesian framework

7

P( model | data ) =
P( data | model ) P( model )

P( data )

likelihood priors

marginal 
probability of the 

data

posterior



Bayesian divergence time estimation
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Understanding the tripartite approach to Bayesian divergence time estimation 
Warnock, Wright. (2020)
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tree modelclock modelsubstitution model

How likely are we to observe a change 
between character states? e.g., A → T
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tree modelclock modelsubstitution model

How have rates of evolution varied 
(or not) across the tree?
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tree modelclock modelsubstitution model

How have species originated, gone 
extinct and been sampled through time?



Bayesian divergence time estimation
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Designed with extendability and 
flexibility in mind 

Rev language, similar to R, and uses a 
graphical modelling framework 

Developed and supported by a large 
international team of developers

RevBayes
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revbayes.github.io

https://revbayes.github.io
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i 2 N

# constant node
r <- 10

# stochastic node
l ⇠ dnExp(r)

# stochastic node (observed)
l.clamp(0.1)

# deterministic node
l := exp(r)

# stochastic nodes (iid)
for (i in 1:N) {

l[i] ⇠ dnExp(r)

}



Intro to BEAST2
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Also designed with extendability and 
flexibility in mind 

Also developed and supported by a 
large international team of developers 

Has a suite of apps that can used to 
generate input files and analysis the 
output

BEAST2
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www.beast2.org
Scots poem - also the BEAST2 logo!

http://2196F3
http://www.beast2.org/
https://blogs.baruch.cuny.edu/poemofthemonth/2011/11/17/to-a-mouse/
https://www.beast2.org


BEAST2 toolkit 
and work flow
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Step 1. generate the 
xml file in BEAUti

Step 2. run your 
analysis in BEAST

Step 3a. Examine 
you log files using 
Tracer

Step 3b. Generate a 
summary tree using 
TreeAnnotator 

Step 4. Examine your 
summary tree in FigTree

Step… any other 
downstream analysis



BEAST2 input: the XML file
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Caveat: if you want to use 
an option not available in 
BEAUti you have to learn 
how to edit the XML



Note all tree models in 
BEAST2 incorporate a 
temporal component

A wide range of 
models and tree 
structures
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• population and transmission trees: branches represent not one lineage, but entire popula-
tions (or species) [7, 11], and branching events represent population splits (or speciation or
transmission events) [12] (Fig 1b),

• sampled ancestors: fossils may be direct ancestors of other fossils or extant species [13]
(Fig 1d),

• structured populations: branches are painted according to which population the individual
belongs to [5] (Fig 1c),

• clonal frame ancestral recombination graph: some gene regions have alternative parent
edges added to a “clonal frame” phylogeny, resulting in a tree-based network [14] (Fig 1e),

• species networks: hybridization or admixture after isolation events are included in the spe-
cies history (so that the species history is a directed network) but gene histories (genealogies)
are still represented by binary trees [15] (Fig 1f),

• polytomies: one individual gives rise to many lineages at the same time.

Fig 1. Phylogenetic structures available in BEAST 2. (a) A tip-dated time tree, with leaf times as boundary conditions but not data
(generally a coalescent prior is applied in this setting). (b) A species tree with one or more embedded gene trees (c) A multi-type time
tree has measured types at the leaves and the type changes that paint the ancestral lineages in the tree are sampled as latent variables
by MCMC. (d) A sampled ancestor tree, with two types of sampling events: extinct species (red) and extant species (blue). Extinct
species can be leaves or, if they are the direct ancestor of another sample, degree-2 sampled ancestor nodes. (e) An ancestral gene
conversion graph is composed of a clonal frame (solid time tree) and an extra edge and gene boundaries for each gene conversion
event. (f) A species network with one or more embedded gene trees.

https://doi.org/10.1371/journal.pcbi.1006650.g001

BEAST 2.5 for Bayesian evolutionary analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006650 April 8, 2019 4 / 28

Bouckaert et al. (2019) PLOS Comp Bio

https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006650&type=printable
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https://taming-the-beast.org/

https://taming-the-beast.org/


Recap: node dating
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We can use a calibration density to 
constrain internal node ages 

We typically use a birth-death 
process model to describe the tree 
generating process 

Node dating
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Oldest fossil
sampling time

Speciation 
time

Uniform (min, max)

Exponential (λ)

Gamma (α, β)

Lognormal (μ, σ)

Normal (μ, σ)

time

Adapted from Heath (2012) Sys Bio



Graphical representation of the tripartite model
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Graphical 
representation 
of the birth-
death process

25



Graphical models: relaxed clock model
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Exercise
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https://taming-the-beast.org/tutorials/Introduction-to-BEAST2/
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Scenario Software

Node dating with large datasets MCMCTree

If want (or have to) fix the tree topology MCMCTree

If fossil sampling is sparse or complex MCMCTree

If you have abundant fossil data, or are interested in the 
topological position of fossils BEAST2, RevBayes

If you’re interested in the phylodynamic parameters BEAST2, RevBayes

If you want to use a specific model BEAST2, RevBayes, 
MCMCTree



Recap
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Bayes’ theorem
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Pr( model | data )  =

Pr( data | model ) Pr( model )

Pr( data )



Bayes’ theorem
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Likelihood

Pr( model | data )  =

Pr( data | model ) Pr( model )

Pr( data )

The probability of the 
data given the model 
assumptions and 
parameter values



Bayes’ theorem
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Priors

Pr( model | data )  =

Pr( data | model ) Pr( model )

Pr( data )

This represents our 
prior knowledge of 
the model 
parameters



Bayes’ theorem
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Marginal probability

Pr( model | data )  =

Pr( data | model ) Pr( model )

Pr( data )
The probability of the 
data, given all possible 
parameter values. Can 
be thought of as a 
normalising constant



Bayes’ theorem
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posterior

Pr( model | data )  =

Pr( data | model ) Pr( model )

Pr( data )

Reflects our combined 
knowledge based on the 
likelihood and the priors



Bayesian tree inference
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