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Objectives

• Recap: tripartite framework 

• The fossilised birth-death process 

• Total-evidence dating 

• Phylodynamics
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Bayesian divergence time estimation
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Recap



We use a Bayesian framework
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Bayesian divergence time estimation
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Understanding the tripartite approach to Bayesian divergence time estimation 
Warnock, Wright. (2020)



Bayesian divergence time estimation
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We can use a calibration density to 
constrain internal node ages 

We typically use a birth-death 
process model to describe the tree 
generating process 

Recap: Node dating
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Oldest fossil
sampling time

Speciation 
time

Uniform (min, max)

Exponential (λ)

Gamma (α, β)

Lognormal (μ, σ)

Normal (μ, σ)

time

Adapted from Heath (2012). Sys Bio



Issues with node dating
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1. Rate and time is non-identifiable 

2. Calibrations are hard to define objectively 

3. The “effective priors” do not match the user specified priors 

4. We’re potentially excluding a lot of information
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Rate and time are not identifiable - not a conventional Bayesian problem

The priors will always influence our results
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Prior Prior Likelihood

Slide adapted from Sebastian Duchene 1.



Hard minimum bounds are based on first 
appearances 

Soft maximum bounds are based on more 
tenuous evidence — typically the 97.5% 
limit of the calibration density 

The upper bounds often influence the 
results

Minimum and maximum constraints
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Oldest fossil
sampling time

Speciation 
time

Uniform (min, max)

Exponential (λ)

Gamma (α, β)

Lognormal (μ, σ)

Normal (μ, σ)

time

Adapted from Heath 2012. Sys Bio2.



“The [soft] maximum constraint is 
established as older than all the 
oldest possible records, extending 
back to encompass a time when the 
ecologic, biogeographic, geologic, 
and taphonomic conditions for the 
existence of the lineage are met, but 
no records are known.”

Maximum constraints
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Our ability to correlate biological evolution with cli-

mate change, geological evolution, and other historical

patterns is essential to understanding the processes

that shape biodiversity. Combining data from the fos-

sil record with molecular phylogenetics represents an

exciting synthetic approach to this challenge. The first

molecular divergence dating analysis (Zuckerkandl and

Pauling 1962) was based on a measure of the amino

acid differences in the hemoglobin molecule, with re-

placement rates established (calibrated) using paleon-

tological age estimates from textbooks (e.g., Dodson

1960). Since that time, the amount of molecular se-

quence data has increased dramatically, affording ever-

greater opportunities to apply molecular divergence

approaches to fundamental problems in evolutionary

biology. To capitalize on these opportunities, increas-

ingly sophisticated divergence dating methods have

been, and continue to be, developed. In contrast, com-

paratively, little attention has been devoted to critically

assessing the paleontological and associated geological

data used in divergence dating analyses. The lack of

rigorous protocols for assigning calibrations based on

fossils raises serious questions about the credibility of

divergence dating results (e.g., Shaul and Graur 2002;

Brochu et al. 2004; Graur and Martin 2004; Hedges and

Kumar 2004; Reisz and Müller 2004a, 2004b; Theodor

2004; van Tuinen and Hadly 2004a, 2004b; van Tuinen

et al. 2004; Benton and Donoghue 2007; Donoghue and

Benton 2007; Parham and Irmis 2008; Ksepka 2009;

Benton et al. 2009; Heads 2011).

The assertion that incorrect calibrations will nega-

tively influence divergence dating studies is not con-

troversial. Attempts to identify incorrect calibrations

through the use of a posteriori methods are avail-

able (e.g., Near and Sanderson 2004; Near et al. 2005;

Rutschmann et al. 2007; Marshall 2008; Pyron 2010;

Dornburg et al. 2011). We do not deny that a posteriori

methods are a useful means of evaluating calibrations,

but there can be no substitute for a priori assessment of

the veracity of paleontological data.

Incorrect calibrations, those based upon fossils that

are phylogenetically misplaced or assigned incorrect
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Example from insects
Minimum (all nodes) 
• 238.5 Ma 
• Triassic Grès-a-Voltzia Frm, France 
• Earliest (non-controversial) 

evidence for all 4 lineages 
Maximum (all nodes) 
• 295.4 Ma 
• Boskovice Furrow, Moravia, 

Czechia 
• Huge diversity of insects 

described from here - no members 
of even total group Diptera from 
here or younger deposits

Min & max constraints
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Bombyx (silk moth)

Anopheles (mosquito)

Drosophila (fruit fly)

Mayetiola (hessian fly)

Diptera and 
Lepidoptera+Trichoptera

Crown Diptera

Warnock et al. 20112.



The user “specified priors” will not (always) 
match the “effective priors” used during analysis 

14
3.

We can run our analysis “under the prior” (we ignore the sequence data) 
to see how the software actually constructs the prior density  
— accounts for the interaction between nodes



15
3.

Bombyx (silk moth)

Anopheles (mosquito)

Drosophila (fruit fly)

Mayetiola (hessian fly)

Diptera

Warnock et al. 2011

molecular biologists and palaeontologists. Improved
accuracy and precision of divergence time estimation
is more likely to result from improvement of divergence
time priors to better summarize the information in the
fossil record than from accumulation of molecular
sequence data [13].
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Figure 2. The effect of truncation in the establishment of the
joint time prior. The dashed line represents the user-specified
uniform prior, the red line represents the effective priors, and
the solid black lines represent the marginal posteriors. (a)
Interaction of the overlapping priors used to constrain the
age of nodes 9 and 10 of figure 1. (b) Interaction between
the priors used to constrain nodes 12–14 of figure 1, all of
which share the same fossil-based minimum and maximum
constraints.
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Posteriors look suspiciously like 
the effective priors….



An example from turtles 

Dashed lines = the specified priors 

Grey shaded area = effective priors 
for one calibration, analysed alone 

Black shaded area = effective 
priors for all calibrations together
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permuted experimentally until the primary palaeontological
constraints are reflected in the effective time prior.

(c) A posteriori versus a priori approaches to assessing
calibration quality

Time priors have a substantial impact upon the outcome of
divergence time analyses, and so it is necessary to discriminate
between ‘good’ and ‘bad’ calibrations. Hence, there has been

a great deal of effort expended in establishing criteria on
which fossil calibrations should be based [5–7,13,30,32,41,42],
and in developing methodological approaches to discriminat-
ing misleading fossil calibrations [18–26,31,38,43,44]. The
a posteriori original cross-validation approach [26,31] and its
subsequent developments [22,24,25,38] emphasize calibration
consistency as the most desirable quality in a set of calibrations.
The underlying assumptions of the cross-validation approach
to assessing calibration quality have been criticized previously
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Figure 3. Plots contrasting the user-specified uniform calibration priors (dashed lines), firstly, with the effective marginal priors observed when each node is used
for calibration during independent rounds of cross-validation (grey plots) and secondly, with the effective priors observed when all calibrations are combined in the
final analysis in MCMCTREE (black lines). This diagram illustrates how the interaction between different calibrations in the joint prior can result in effective priors that
deviate substantially from the initial user-specified distributions.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20141013
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Warnock et al. 2015. Proc B3.



The model doesn’t describe the process that generated the fossil sampling 
times, meaning the model is statistically incoherent 

The calibration priors are difficult to specify objectively and can have a 
massive impact on the divergence times. They can also interact with each 
other and / or the birth-death process prior in unintuitive ways

17

Some references on issues with specified vs effective priors 
Yang and Rannala. 2006. MBE  

Heled and Drummond. 2012. Sys Bio 
Warnock et al. 2012, 2015

http://abacus.gene.ucl.ac.uk/ziheng/pdf/2006YangRannalaMBEv23p212.pdf
https://pubmed.ncbi.nlm.nih.gov/21856631/
https://royalsocietypublishing.org/doi/full/10.1098/rspb.2014.1013
https://royalsocietypublishing.org/doi/10.1098/rspb.2014.1013


There are many! 

A lot of information is excluded, since typically we assign one fossil 
per calibration node

Node dating: potential issues

18

sampled 
fossils

fossils used 
for node 

calibration 
— all others 

are not 
directly 

included in 
the inference40 40 00



Example: living penguins
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Late Cretaceous Paleocene Eocene Oligocene Miocene Pli.Ple.

Nearest living 
relative is the 
group 
containing 
falcons - 
separated by 
~60 Ma



Example: living penguins
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Paleocene Eocene Oligocene Miocene Pli. Ple.

Artistic reconstructions by: Stephanie Abramowicz for Scientific American
Fordyce, R.E. and D.T. Ksepka. The Strangest Bird Scientific American 307, 56 – 61 (2012)

But penguins 
have a rich 
fossil record!



Total-evidence dating
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Tip-dating or “total-evidence” dating
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40 40 00

1010…

1010…

ATGC… 

ATGC… 1010…

ATGC…

ATGC… 1010…
ATGC…

We have DNA for living 
species. We have  
morphology for living and 
fossil species 

Fossils can be positioned 
on the basis of 
morphology 
→ accounts for 
uncertainty in fossil 
placement



The uniform tree prior

23

0%
20%
40%
60%
80%

100 %

Orthoptera
Paraneoptera

Neuroptera
Raphidioptera
Coleo Polyphaga
Coleoptera Adephaga
Lepidoptera
Mecoptera

Xyela
Macroxyela

Runaria
Paremphytus

Blasticotoma

Tenthredo
Aglaostigma
Dolerus

Selandria
Strongylogaster
Monophadnoides
Metallus

Athalia

Taxonus

Hoplocampa
Nematinus
Nematus
Cladius
Monoctenus
Gilpinia
Diprion

Cim bicinae
Abia
Corynis
Arge
Sterictiphora
Perga
Phylacteophaga
Lophyrotoma

Acordulecera
Decameria

Neurotoma

Onycholyda
Pamphilius
Cephalcia
Acantholyda

Megalodontes cephalotes
Megalodontes skorniakowii

Cephus
Calameuta
Hartigia
Syntexis
Sirex
Xeris
Urocerus
Tremex
Xiphydria

Orussus

Stephanidae A
Stephanidae B

Megalyridae

Trigonalidae

Chalcidoidea

E vanioidea

Ichne umonidae

Cynipoidea

Apoidea A
Apoidea B
Apoidea C
V espidae

Grimmaratavites

Ghilarella

Aulidontes
Protosirex
Aulisca
Karatavites
Sepulca Onokhoius

Trematothorax
Thoracotrema
Prosyntexis

Ferganolyda
Rudisiricius
Sogutia

Xyelula
Brigittepterus

Mesolyda
Brachysyntexis

Dahuratoma
Pseudoxyelocerus

Palaeathalia
Anaxyela

Syntexyela
Kulbastavia

Undatoma

Abrotoxyela

Mesoxyela mesozoica
SpathoxyelaTriassoxyela

Leioxyela
Nigrimonticola

Chaetoxyela
Anagaridyela

Eoxyela
Liadoxyela

Xyelotoma

Pamphiliidae undescri bed

Turgidontes

Praeoryssus
Paroryssus

Mesorussus

Symphytopterus
Cleistogaster
Leptephialtites
Stephanogaster

97

100

100

100
100

100
100

100

100

100
100

100

100
100

100

100
100

100

100
100

100

100

100100

100

100

100

100

100

100

97

68

55

77

75

91

84

61
57

62

98
96

71

71

85

93

52

95

64

80

64

99

77

99

98

97

82

52

58

94
90

60

70

57

8361

70
60

350 300 250 200 150 100 50 0     Million years before present

Percentage of morphological
characters scored 
for each terminal

Ronquist et al. 2012 Sys Bio

The uniform tree prior 
assumes all trees and 
branch lengths are 
equally likely within the 
bounds of the fossil ages 
(+ a max upper bound) 

It does not explicitly 
account for the fossil 
sampling process  Dated tree of Hymenoptera

https://academic.oup.com/sysbio/article/61/6/973/1665823
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12.5 A uniform tree prior implies 
time till the next split is 
independent of how many 
lineages there are present 

This is in contrast to birth-death 
processes, where more 
lineages mean a higher chance 
of observing a split in one of 
these lineages 

Uniform tree priors - why not use them? 
Remco Bouckaert

https://www.beast2.org/2021/05/31/uniform-tree-prior.html


What does a generating prior for the 
fossil record look like?
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The fossilised birth-death process
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27

species origination 

t = 0

fossil 
sampling events

extinction

living 
species

time



28
t = 0

Some lineages only sampled once

Some lineages go completely unsampled

Sampled ancestors



The complete tree

29
t = 0time



The reconstructed tree

30
time

t = 0



The fossilised birth-death (FBD) 
process allows us to calculate 
the probability of observing the 
reconstructed tree

31

Sampling-through-time in birth-death trees. Stadler. (2010) 
First implemented: Heath et al. (2014) and Gavryushkina et al. (2014)

P( | )λ μ
ψ
ρ



The proportion increases with higher turnover (birth - death) or higher sampling

Sampled ancestors

32Walker, Heath. 2020. Phylogenetics in the Genomic Era. 

https://hal.archives-ouvertes.fr/hal-02536361/


Ignoring sampled ancestors can lead to inaccurate parameter estimates

Sampled ancestors

33Gavryushkina et al. 2014 PLoS Comp Bio

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003919


Time calibrated tree of living and fossil bears

34

First application of the 
FBD model.  

Fossils are incorporated 
via constraints, not 
character data. Their 
precise placement can 
not be inferred, but this 
uncertainty will be 
reflected in the posterior

Heath et al. 2014. PNAS



Exercise
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https://phylogenetics-fau.netlify.app/exercise-06


Graphical model representation of the FBDP

36

T

�

µ

 

speciation rate

extinction rate

fossilization rate

exponential

exponential

exponential

⇢

sampling probability

�

uniform

origin time

to the phyloCTMCs



These models are special 
cases of the FBD process, with 
fossil sampling (ψ) = zero. 

We can also use ρ at t > 0 to 
model serial sampling.

Relationship to (some) 
other birth-death 
process models

37

Elements of Paleontology 19

Figure 5 The complete versus reconstructed trees under birth-death process
models. The assumptions of four different models are captured in each row. The
first column shows an example outcome of the joint diversification and sampling
processes (i.e., the complete tree), where diamonds represent extant or fossil sam-
ples. The second column shows the tree that contains sampled lineages only (i.e.,
the reconstructed tree). The third column shows the parameters and the name com-
monly applied to the model used to described the probability of observing the
reconstructed tree shown in column 2, given we assume the generating processes
shown in column 1. In all cases we assume constant speciation, extinction and
fossil recovery, and uniform extant species sampling. Trees and fossils were sim-
ulated and plotted using the R packages h`22aBK (Stadler, 2011) and 6QbbBHaBK
(Barido-Sottani et al., 2019). Code to reproduce this figure is available online (DOI:
10.5281/zenodo.4035016).
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As such, our assessment of the success of CBPs in
capturing evolutionary processes and patterns should
be viewed as maximally optimistic and our results
should not be taken as evidence for or against the
capacity of these methods to capture real patterns. In
particular, because our trait data are simulated, none of
the analyses provide any information on real patterns in
these groups.

Conversion of Taxonomies and Cladograms into Phylogenies:
Tree Construction and Time-Scaling

All tree manipulation and analyses were performed in
the R software environment (3.0.2; R Core Team 2013).
Topologies derived from cladograms and taxonomies
were time-scaled in order to produce phylogenies
(method outlined below). References and details
for the source topologies are shown in online
Appendix 1. All data sets are at the generic level
except that for tetraodontiform fishes, where species-
level classifications and range data were available. When
selecting cladograms we used whichever tree topology
the original authors had applied for phylogenetic
comparative analyses (if included), or the topology
preferred by the original authors in the absence of
further analyses within the publication. This was
to ensure that our data set included topologies
that would be the most likely to be accepted for
use with PCMs incorporating paleontological data.
Our data set therefore included solutions arising
from Bayesian, maximum-likelihood and maximum
parsimony inference. The literature used to obtain
taxonomies only contained one classification scheme for
each clade, and this was converted in to a tree structure
as a series of nested polytomies corresponding to each
taxonomic rank (Fig. 1).

Taxonomies by nature contain many polytomies
when directly plotted as trees (e.g., if there are five
genera contained within one family, these genera would
be depicted as a single multichotomy, unless sub-
familial relationships had been proposed). These were
left as hard polytomies to represent the maximum
amount of resolution based on available information,
except where the PCM required a fully resolved
tree (mode of evolution). In preliminary analyses
(Supplementary Material: Results, available on Dryad),
executing simulations where (i) taxonomies were
randomly resolved before time-scaling or (ii) random
trees used for comparison were collapsed to have the
same number of internal nodes as the TBP did not
make a notable or systematic difference to the outcome.
This is consistent with previous work showing that the
inclusion of polytomies in a phylogeny for a PCM does
not bias the result and has a negligible effect on the rate
of type I error (Garland and Diaz-Uriarte 1999; Stone
2011). Housworth and Martins (2001) provide a method
by which error caused by uncertainty in relationships
within a polytomy can be incorporated into estimates of
error bounds for the test statistic in a PCM.
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FIGURE 1. Method for converting a taxonomic classification to a
cladogram that can then be time-scaled with fossil range data to make
a phylogeny. Taxa that are in the same group at a particular rank are
combined in a polytomy, starting at the genus level and moving toward
the root of the tree. a) The original classification as published. b) The
resulting cladogram after conversion, before time-scaling.

Cladograms of extinct taxa can be scaled according
to the first appearance date (FAD) of each taxon to
generate phylogenies with branch lengths representing
the amount of time since sister taxa diverged (Lloyd et al.
2012; Bapst 2013, 2014). The branch lengths are estimated
based on the FAD of each taxon in the fossil record,
and the assumption that the divergence between two
lineages must have occurred, at the latest, at the FAD of
the older taxon. Some analyses also require an estimate
of the last appearance date of a taxon (e.g., measuring the
phylogenetic clustering of extinction) to estimate a taxon
duration. First and last possible appearance dates for all
taxa derived principally from the Paleobiology Database
(PaleoBioDB; www.paleobiodb.org last accessed March
30, 2015). These data were modified where the taxon was
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As such, our assessment of the success of CBPs in
capturing evolutionary processes and patterns should
be viewed as maximally optimistic and our results
should not be taken as evidence for or against the
capacity of these methods to capture real patterns. In
particular, because our trait data are simulated, none of
the analyses provide any information on real patterns in
these groups.

Conversion of Taxonomies and Cladograms into Phylogenies:
Tree Construction and Time-Scaling

All tree manipulation and analyses were performed in
the R software environment (3.0.2; R Core Team 2013).
Topologies derived from cladograms and taxonomies
were time-scaled in order to produce phylogenies
(method outlined below). References and details
for the source topologies are shown in online
Appendix 1. All data sets are at the generic level
except that for tetraodontiform fishes, where species-
level classifications and range data were available. When
selecting cladograms we used whichever tree topology
the original authors had applied for phylogenetic
comparative analyses (if included), or the topology
preferred by the original authors in the absence of
further analyses within the publication. This was
to ensure that our data set included topologies
that would be the most likely to be accepted for
use with PCMs incorporating paleontological data.
Our data set therefore included solutions arising
from Bayesian, maximum-likelihood and maximum
parsimony inference. The literature used to obtain
taxonomies only contained one classification scheme for
each clade, and this was converted in to a tree structure
as a series of nested polytomies corresponding to each
taxonomic rank (Fig. 1).

Taxonomies by nature contain many polytomies
when directly plotted as trees (e.g., if there are five
genera contained within one family, these genera would
be depicted as a single multichotomy, unless sub-
familial relationships had been proposed). These were
left as hard polytomies to represent the maximum
amount of resolution based on available information,
except where the PCM required a fully resolved
tree (mode of evolution). In preliminary analyses
(Supplementary Material: Results, available on Dryad),
executing simulations where (i) taxonomies were
randomly resolved before time-scaling or (ii) random
trees used for comparison were collapsed to have the
same number of internal nodes as the TBP did not
make a notable or systematic difference to the outcome.
This is consistent with previous work showing that the
inclusion of polytomies in a phylogeny for a PCM does
not bias the result and has a negligible effect on the rate
of type I error (Garland and Diaz-Uriarte 1999; Stone
2011). Housworth and Martins (2001) provide a method
by which error caused by uncertainty in relationships
within a polytomy can be incorporated into estimates of
error bounds for the test statistic in a PCM.
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FIGURE 1. Method for converting a taxonomic classification to a
cladogram that can then be time-scaled with fossil range data to make
a phylogeny. Taxa that are in the same group at a particular rank are
combined in a polytomy, starting at the genus level and moving toward
the root of the tree. a) The original classification as published. b) The
resulting cladogram after conversion, before time-scaling.

Cladograms of extinct taxa can be scaled according
to the first appearance date (FAD) of each taxon to
generate phylogenies with branch lengths representing
the amount of time since sister taxa diverged (Lloyd et al.
2012; Bapst 2013, 2014). The branch lengths are estimated
based on the FAD of each taxon in the fossil record,
and the assumption that the divergence between two
lineages must have occurred, at the latest, at the FAD of
the older taxon. Some analyses also require an estimate
of the last appearance date of a taxon (e.g., measuring the
phylogenetic clustering of extinction) to estimate a taxon
duration. First and last possible appearance dates for all
taxa derived principally from the Paleobiology Database
(PaleoBioDB; www.paleobiodb.org last accessed March
30, 2015). These data were modified where the taxon was
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As such, our assessment of the success of CBPs in
capturing evolutionary processes and patterns should
be viewed as maximally optimistic and our results
should not be taken as evidence for or against the
capacity of these methods to capture real patterns. In
particular, because our trait data are simulated, none of
the analyses provide any information on real patterns in
these groups.

Conversion of Taxonomies and Cladograms into Phylogenies:
Tree Construction and Time-Scaling

All tree manipulation and analyses were performed in
the R software environment (3.0.2; R Core Team 2013).
Topologies derived from cladograms and taxonomies
were time-scaled in order to produce phylogenies
(method outlined below). References and details
for the source topologies are shown in online
Appendix 1. All data sets are at the generic level
except that for tetraodontiform fishes, where species-
level classifications and range data were available. When
selecting cladograms we used whichever tree topology
the original authors had applied for phylogenetic
comparative analyses (if included), or the topology
preferred by the original authors in the absence of
further analyses within the publication. This was
to ensure that our data set included topologies
that would be the most likely to be accepted for
use with PCMs incorporating paleontological data.
Our data set therefore included solutions arising
from Bayesian, maximum-likelihood and maximum
parsimony inference. The literature used to obtain
taxonomies only contained one classification scheme for
each clade, and this was converted in to a tree structure
as a series of nested polytomies corresponding to each
taxonomic rank (Fig. 1).

Taxonomies by nature contain many polytomies
when directly plotted as trees (e.g., if there are five
genera contained within one family, these genera would
be depicted as a single multichotomy, unless sub-
familial relationships had been proposed). These were
left as hard polytomies to represent the maximum
amount of resolution based on available information,
except where the PCM required a fully resolved
tree (mode of evolution). In preliminary analyses
(Supplementary Material: Results, available on Dryad),
executing simulations where (i) taxonomies were
randomly resolved before time-scaling or (ii) random
trees used for comparison were collapsed to have the
same number of internal nodes as the TBP did not
make a notable or systematic difference to the outcome.
This is consistent with previous work showing that the
inclusion of polytomies in a phylogeny for a PCM does
not bias the result and has a negligible effect on the rate
of type I error (Garland and Diaz-Uriarte 1999; Stone
2011). Housworth and Martins (2001) provide a method
by which error caused by uncertainty in relationships
within a polytomy can be incorporated into estimates of
error bounds for the test statistic in a PCM.
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FIGURE 1. Method for converting a taxonomic classification to a
cladogram that can then be time-scaled with fossil range data to make
a phylogeny. Taxa that are in the same group at a particular rank are
combined in a polytomy, starting at the genus level and moving toward
the root of the tree. a) The original classification as published. b) The
resulting cladogram after conversion, before time-scaling.

Cladograms of extinct taxa can be scaled according
to the first appearance date (FAD) of each taxon to
generate phylogenies with branch lengths representing
the amount of time since sister taxa diverged (Lloyd et al.
2012; Bapst 2013, 2014). The branch lengths are estimated
based on the FAD of each taxon in the fossil record,
and the assumption that the divergence between two
lineages must have occurred, at the latest, at the FAD of
the older taxon. Some analyses also require an estimate
of the last appearance date of a taxon (e.g., measuring the
phylogenetic clustering of extinction) to estimate a taxon
duration. First and last possible appearance dates for all
taxa derived principally from the Paleobiology Database
(PaleoBioDB; www.paleobiodb.org last accessed March
30, 2015). These data were modified where the taxon was
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As such, our assessment of the success of CBPs in
capturing evolutionary processes and patterns should
be viewed as maximally optimistic and our results
should not be taken as evidence for or against the
capacity of these methods to capture real patterns. In
particular, because our trait data are simulated, none of
the analyses provide any information on real patterns in
these groups.

Conversion of Taxonomies and Cladograms into Phylogenies:
Tree Construction and Time-Scaling

All tree manipulation and analyses were performed in
the R software environment (3.0.2; R Core Team 2013).
Topologies derived from cladograms and taxonomies
were time-scaled in order to produce phylogenies
(method outlined below). References and details
for the source topologies are shown in online
Appendix 1. All data sets are at the generic level
except that for tetraodontiform fishes, where species-
level classifications and range data were available. When
selecting cladograms we used whichever tree topology
the original authors had applied for phylogenetic
comparative analyses (if included), or the topology
preferred by the original authors in the absence of
further analyses within the publication. This was
to ensure that our data set included topologies
that would be the most likely to be accepted for
use with PCMs incorporating paleontological data.
Our data set therefore included solutions arising
from Bayesian, maximum-likelihood and maximum
parsimony inference. The literature used to obtain
taxonomies only contained one classification scheme for
each clade, and this was converted in to a tree structure
as a series of nested polytomies corresponding to each
taxonomic rank (Fig. 1).

Taxonomies by nature contain many polytomies
when directly plotted as trees (e.g., if there are five
genera contained within one family, these genera would
be depicted as a single multichotomy, unless sub-
familial relationships had been proposed). These were
left as hard polytomies to represent the maximum
amount of resolution based on available information,
except where the PCM required a fully resolved
tree (mode of evolution). In preliminary analyses
(Supplementary Material: Results, available on Dryad),
executing simulations where (i) taxonomies were
randomly resolved before time-scaling or (ii) random
trees used for comparison were collapsed to have the
same number of internal nodes as the TBP did not
make a notable or systematic difference to the outcome.
This is consistent with previous work showing that the
inclusion of polytomies in a phylogeny for a PCM does
not bias the result and has a negligible effect on the rate
of type I error (Garland and Diaz-Uriarte 1999; Stone
2011). Housworth and Martins (2001) provide a method
by which error caused by uncertainty in relationships
within a polytomy can be incorporated into estimates of
error bounds for the test statistic in a PCM.
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FIGURE 1. Method for converting a taxonomic classification to a
cladogram that can then be time-scaled with fossil range data to make
a phylogeny. Taxa that are in the same group at a particular rank are
combined in a polytomy, starting at the genus level and moving toward
the root of the tree. a) The original classification as published. b) The
resulting cladogram after conversion, before time-scaling.

Cladograms of extinct taxa can be scaled according
to the first appearance date (FAD) of each taxon to
generate phylogenies with branch lengths representing
the amount of time since sister taxa diverged (Lloyd et al.
2012; Bapst 2013, 2014). The branch lengths are estimated
based on the FAD of each taxon in the fossil record,
and the assumption that the divergence between two
lineages must have occurred, at the latest, at the FAD of
the older taxon. Some analyses also require an estimate
of the last appearance date of a taxon (e.g., measuring the
phylogenetic clustering of extinction) to estimate a taxon
duration. First and last possible appearance dates for all
taxa derived principally from the Paleobiology Database
(PaleoBioDB; www.paleobiodb.org last accessed March
30, 2015). These data were modified where the taxon was
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Time calibrated tree of living and fossil penguins
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Literature survey: FBD use to date

• 176 studies, with 208 empirical analyses, applying the FBD process (since 
February 2024) 

• Used across a huge range of time intervals, data sets (mean extant samples 
= 74, mean extinct samples = 60) 

• 109 studies used BEAST2, 93 used MrBayes, 10 used RevBayes

41Mulvey et al. 2025. Paleobiology
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Including samples with no character data improves inference
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• The topology of extant taxa is largely unaffected by how fossils are 
incorporated 

• Fossils and age information help inform topology 

• Divergence times are much more sensitive to errors in fossil placement and 
model misspecification 

• Total-evidence dating is more robust to model misspecification

Some lessons learned from simulations

Ignoring stratigraphic age uncertainty leads to erroneous estimates of species divergence times and topology 
Barido-Sottani et al. (2019, 2020). Proc Royal Soc B; Frontiers in Ecology and Evolution. 
Barido-Sottani et al. (2023) Putting the F in FBD analyses: tree constraints or morphological data? Palaeontology



47

impact on tree inference across a wide range of realistic
scenarios, which is congruent with the results of empirical
studies [10]. Analyses that incorporate palaeontological data
are more accurate than those based exclusively on extant
taxa, regardless of inference method (figure 1). In part, this
improvement is driven by fossils’ power to elucidate relation-
ships within living clades, especially among lineages
separated by mid- to shallow divergences (figure 3). Hence,
we might expect the increased congruence between morpho-
logical and molecular trees found for some clades [6–9,51])
to reflect a general trend of consilience through improved
accuracy as fossils are incorporated in phylogenetic

reconstruction. Trees that combine living and extinct taxa
also show a higher proportion of resolved nodes, while at
the same time leaving more deep nodes unresolved (figures 1
and 3). The phylogenetic analysis of morphological data has
been previously shown to result in overprecise topologies
[21,24], a phenomenon we find to be most prevalent among
deep divergences. This result implies that characters evolving
at rates comparable to those of empirical morphological
traits fail to retain phylogenetic signal for ancient and rapid
divergences (electronic supplementary material, figures S3
and S10). With increasing fossil sampling, this overprecision
is remedied as deep nodes collapse (especially under
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Figure 1. Impact of fossil sampling, missing data and method of inference on topological accuracy and precision. Precision (right) represents the proportion of
resolved bipartitions/quartets, accuracy (left) the fraction of these that are correct. Values correspond to means ± 1 s.d. (Online version in colour.)
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Barido-Sottani et al. (2020). Frontiers in Ecology & Evolution
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Cambrian stalked echinoderms show  
unexpected plasticity of arm construction  

Zamora & Smith. (2012)

Two of the best-preserved specimens of D. purujoensis

were studied using the Metris X-Tek HMX ST computed

tomography (CT) system at the Natural History Museum,

London. High-resolution slices were obtained and a three-

dimensional model of its anatomy built using the software

SPIERS [17]. The better of these was used to build a three-

dimensional model based on 1862 digital slices that were

treated independently. Isolated plate boundaries were

impossible to differentiate internally owing to the absence

of infilling sediment, impeding a full reconstruction of

these elements. Plating and stereom details are better

observed from latex casts. The most important contri-

bution from the CT scan was accurate reconstruction

of the arm structure, a key character in the discussion

(see above).

A cladistic analysis was carried out using the software

PAUP* [18] to establish this new taxon’s phylogenetic position.

We included all nine Cambrian stalked echinoderms whose

morphologies are well known (electronic supplementary

material, table 1), as well as two representative Early Ordovician

crinoids (Aethocrinus and Titanocrinus) and an Ordovician glyp-

tocystitid and pleurocystitid. As root, we used the Lower

Cambrian Kinzercystis, which is generally considered basal to

all stalked echinoderms [19–21]. Twenty-eight skeletal charac-

ters were identified as phylogenetically informative and scored.

Character descriptions and the resultant data matrix are

provided as the electronic supplementary material. A branch-

and-bound search was carried out with all characters equally

weighted and unordered. Bootstrap values are based on 1000

random addition replicates.
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Figure 1. Dibrachicystis purujoensis gen. et sp. nov. (a) MPZ2011/2, natural mould of complete individual. (b) MPZ2009/
1236, theca, arms and proximal part of stem. (c) MPZ2011/3, theca and basal part of arms. (d) MPZ2011/4, tripartite
stem. (e–g,j,k) CT model reconstruction of stem based on MPZ2009/1236. (h) MPZ0001, proximal part of stem and
cone-shaped plate. (i) MPZ2011/5, single ossicle of proximal stem and reconstruction. Abbreviations: af, articulation
flange; cp, conical plate; ds, distal stem; fa1, fa2, feeding appendages (arm); pe, periproct opening; ps, proximal stem;
t, theca. (b–d,h,i) Latex casts.

294 S. Zamora & A. B. Smith Arms in Cambrian echinoderms

Proc. R. Soc. B (2012)
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Sample age uncertainty
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age uncertainty

Barido-Sottani et al. 2018, 2020, Ignoring Fossil Age Uncertainty Leads to Inaccurate Topology in Time Calibrated Tree Inference 
Barido-Sottani et al. 2023. Putting the F in FBD analyses: tree constraints or morphological data? Palaeontology



FBD analyses 
need taxonomists!
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The fossilised birth-death model for the analysis of stratigraphic range data under different speciation modes. Stadler et al. (2018)



Exercise
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https://phylogenetics-fau.netlify.app/exercise-07


Phylodynamics
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 Diversification rate estimation



Bayesian divergence time estimation
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Tree shape is informative about underlying dynamics
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the supply of susceptibles. This feedback,
along with the effect of pathogen epidemic
dynamics on genetics in other systems, is
illustrated schematically in fig. S1A.

Partial immunity to influenza A virus
also generates strong fitness differences
among strains, leading to rapid strain turn-
over. Such continual immune selection de-
termines the shape of phylogenies of the
HA (Fig. 1E) and NA genes; these are
strongly temporal in structure with high
rates of lineage extinction, so that genetic
diversity at any time is limited. The central

trunk depicts the ancestry of the successful
lineages and has the highest rate of amino
acid replacement at key antigenic sites (9),
suggesting that immunological distance
from previous strains determines viral fit-
ness. Although substantial progress has
recently been made in integrating the
individual- and population-level dynamics of
influenza (5), the role of within-host dynam-
ics remains to be added to the picture. Influ-
enza B, and influenza A in other mammals,
generally shows more complex patterns of
antigenic drift (fig. S1B). In addition to anti-

genic drift, influenza pandemics can be
caused by novel HA and NA combinations
(antigenic shift). Aquatic birds are the natural
reservoirs of influenza A viruses and harbor a
variety of antigenic types, thereby providing
an environment in which new recombinant
subtypes can arise and transmit to mammals.

This phylodynamic category also includes
foot and mouth disease virus (FMDV), which
causes a highly infectious acute epidemic
disease of livestock. Primary infection or
vaccination gives imperfect protection
against other variants of the virus, and there is

Fig. 1. (A) Prevaccination measles dynamics: weekly case
reports for Leeds, UK (7). (B) Weekly reports of influenza-
like illness for France (44). (C) Annual diagnosed cases of
HIV in the United Kingdom (45). (D) Measles phylogeny: the
measles virus nucleocapsid gene [63 sequences, 1575 base
pairs (bp)]. (E) Influenza phylogeny: the human influenza A
virus (subtype H3N2) hemagglutinin (HA1) gene longitudi-
nally sampled over a period of 32 years (50 sequences, 1080
bp). (F) Dengue phylogeny: the dengue virus envelope gene
from all four serotypes (DENV-1 to DENV-4, 120 sequences,
1485 bp). (G) HIV-1 population phylogeny: the subtype B
envelope (E) gene sampled from different patients (39
sequences, 2979 bp). (H) HCV population phylogeny: the
virus genotype 1b E1E2 gene sampled from different pa-
tients (65 sequences, 1677 bp). (I) HIV-1 within-host phy-
logeny: the partial envelope (E) gene longitudinally sampled
from a single patient over 5.8 years [58 sequences, 627 bp;
patient 6 from (26)]. All sequences were collected from GenBank and trees were constructed with maximum likelihood in PAUP* (46 ). Horizontal
branch lengths are proportional to substitutions per site. Further details are available from the authors on request.

R E V I E W

16 JANUARY 2004 VOL 303 SCIENCE www.sciencemag.org328

This paper coined the term phylodynamics 
Grenfell et al. 2004. Science



First used for tracking the spread of infectious diseases
The skyline birth-death process
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Stadler et al. 2012. PNAS 
Gavryushkina et al. 2014. PLoS Comp Bio

https://www.pnas.org/doi/10.1073/pnas.1207965110


Macroevolutionary case study
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Lloyd2). For the ornithischians, the two Benson and larger Lloyd
trees all indicate a latest Cretaceous decline (94.5% of posterior
negative for Benson1, 94.6% for Benson2, 97.3% for Lloyd2),
whereas the smaller Lloyd tree suggests no substantial change in
diversity during this interval (49.2% of posterior negative).

The results of the birth-death analyses are summarised in
Figures 2 and 3, which show the piecewise-constant estimates of
diversification and sampling rates, respectively, from each of the
phylogenies, and Supplementary Tables, which provide the esti-
mated parameter values. There is less variation in the BDSKY
results between the different subclades, and based on the different
tree topologies, than in the coalescent results.

The most apparent pattern is that all of the models have much
greater uncertainty on diversification rates in the final time bin, the
Coniacian–Maastrichtian (Figure 2). This is coupled with an
increase in the inferred sampling rates during this interval
(Figure 3). In the full phylogenies and all three subclades, the scale
of this effect decreases with increasing phylogeny size.

Despite this, in the BDSKY analyses, all four phylogenies place
most posterior probability on a positive diversification rate for
dinosaurs in the latest Cretaceous (90.0% of posterior positive for
Lloyd1, 98.0% for Benson1, 98.1% for Benson2, 99.9% for Lloyd2).
In all three subclades, it is more unclear as to whether

diversification was positive or negative, or simply constant, prior
to the K-Pg boundary. All of the models appear to favour positive
diversification in the Late Jurassic (99.9% of posterior positive for
Lloyd1, 100.0% for Benson1, 100.0% for Benson2, 100.0% for
Lloyd2), and also in the Aptian–Turonian (98.4% of posterior
positive for Lloyd1, 98.4% for Benson1, 97.4% for Benson2,
99.2% for Lloyd2).

Discussion

In this study, we characterise dinosaur diversification using two
different phylodynamic models: the birth-death-sampling
(BDSKY) and coalescent skyline models. The coalescent model
recovered a downturn in diversity during the latest Cretaceous with
a posterior probability of 97% using the Benson phylogenies, and a
posterior probability of 94% using the larger Lloyd phylogeny
(Figure 1). The BDSKY model instead inferred an increase in
dinosaur diversity in the latest Cretaceous with a posterior prob-
ability of more than 98% based on these three largest phylogenies
(Figure 2). Our results therefore span the range of diversification
estimates obtained using other methods in previous literature. The
difference in results we obtained using the two phylodynamic
models can be linked directly to the different assumptions they
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Figure 2. Diversification rates estimated using the piecewise-constant fossilised birth-death skyline model. Time moves forwards from left to right along the x-axis, with the K-Pg
boundary at the end of the Coniacian–Maastrichtian bin. Estimates are shown for each of four phylogenies, ordered from smallest to largest. Points show the median values, and
error bars indicate 95% highest posterior density. Dinosaur silhouettes for Ornithischia (top right), Sauropodomorpha (bottom left) and Theropoda (bottom right) are from
Phylopic.
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Models that include 
migration
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Epidemiological parameters. Several epidemiologically relevant pa-
rameters were coinferred along with the transmission tree. First,
we report on the reproductive number in the different regions,
which varied from 1.2 to 1.9 in Hubei to 2.5 to 3.5 in France (SI
Appendix, Fig. S2A). Second, we report on the prevalence of no-
longer infectious cases in each region as of the collection date of
the last analyzed sequence. This quantity can be back-calculated
from the inferred sampling proportion (prevalence = no. se-
quences analyzed/sampling proportion). We note that both the
sampling proportion and prevalence estimates have large credi-
ble intervals (SI Appendix, Fig. S2 B and C). Of the European
regions analyzed, the outbreak in Germany was estimated to be
smaller in early March (150 to 485 cumulative cases) than the
outbreaks in France (709 to 2,185 cases) and other European
countries (719 to 1,782 cases), while the outbreak in Italy was the
largest (2,600 to 4,923 cases).

Comparing Rates of Migration and within-Region Transmission. Fig. 2
compares the rate at which we estimate new cases to arise in
each region from migration versus from within-region transmis-
sion. The estimated rates of new cases from migration and
within-region transmission are represented here as point esti-
mates 5 d before the date of case confirmation, which assumes a
5-d delay between infection and onward transmission or migra-
tion [the choice of 5 d is motivated by serial interval estimates for
SARS-CoV-2 (18)]. We emphasize that we do not consider any
non-European regions beyond Hubei; therefore, transmission
from Hubei to a not-included location and then to Europe is
considered to be migration directly from Hubei to Europe under
our model.
Beginning with the first day on which we have case data from

Hubei, we estimate a substantial risk of infected individuals
migrating from Hubei into European regions. Throughout late
January to mid-February 2020, cases were sporadically detected
in each European region, each of which is associated with a risk
of subsequent within-region transmission. Sustained within-
region transmission is first evident in Italy in mid-February.
Shortly thereafter, sustained within-region transmission occurred
in other European countries, in France and in Germany. By 8
March 2020, the estimated rate of occurrence of new cases from
within-region transmission is within or exceeds the estimated

bounds on the rate of new cases from migration for each region
considered (SI Appendix, Fig. S7A). We obtain the same quali-
tative result in our sensitivity analysis using a very different prior
on the migration rate (SI Appendix, Fig. S7B). We note that the
rates in Fig. 2 are underestimates of the rates of new cases arising
due to migration or transmission due to the underreporting in
the confirmed case data. However, assuming that the amount of
underreporting is comparable across regions, we can indeed
compare the rates.
Finally, we report support for a decrease in migration rates

from Hubei into European regions at the date of the lockdown of
Wuhan (SI Appendix, Fig. S1). We infer that migration decreased
by 40% (95% highest posterior density interval 0–87%). Again,
we note that the migration rate out of Hubei is not necessarily
specific to Hubei, since we do not consider possible migration
paths through other non-European locations.

Discussion
We inferred the early spread of the SARS-CoV-2 virus into and
across Europe as well as the geographic origin of the predomi-
nant A2a lineage spreading in Europe. To do this, we applied a
previously published phylodynamic model to analyze publicly
available viral genome sequences from the epidemic origin in
Hubei, China and from the earliest detected and largest Euro-
pean outbreaks before 8 March 2020. After performing Bayesian
inference, we: 1) Report on inferred patterns of SARS-CoV-2
spread into and across Europe, 2) compare posterior probabili-
ties for several hypotheses on the origin of the A2a lineage, 3)
report on epidemiological parameters, and 4) compare the
timeline of new cases resulting from migration versus within-
region transmission in Europe before borders were closed.
Genome sequence data indicates that prior to 8 March 2020,

SARS-CoV-2 was introduced from Hubei province into France,
Germany, Italy, and other European countries at least two to
four times each (Table 1). These estimates, which are based on
genome sequence data and thus do not rely on having line list
data for individual migration cases, provide a complementary
account of introduction events compared to line list data (19)
and phylogenetic inferences combining genome sequence and
line list data (20–25). The introduction events we report here are
inferred to have occurred along the transmission tree specific to
the analyzed sequence set and are not attributable to individual

Fig. 2. Estimated rate of new cases arising from migration compared with the estimated rate of new cases arising from within-region transmission. For each
day, we multiplied the (smoothed) number of newly confirmed cases in each source region by the posterior sample of migration rates from source to sink. The
median of these rates is shown in the “Migration” row. We also multiplied the (smoothed) number of newly confirmed cases in each sink region by the
posterior sample of transmission rates for the region. The median of these rates is shown in the “Within-region transmission” row. Gray shaded regions
indicate dates on which new cases were reported in each region. Dates are lagged 5 d to account for a 5-d delay between infection and migration or onward
transmission and daily case counts were smoothed by taking a rolling 7-d average. Case data comes from the Johns Hopkins Center for Systems Science and
Engineering (https://github.com/CSSEGISandData/COVID-19).

4 of 8 | PNAS Nadeau et al.
https://doi.org/10.1073/pnas.2012008118 The origin and early spread of SARS-CoV-2 in Europe
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The origin and early spread of SARS-CoV-2 in Europe  
Nadeau et al. 2021. PNAS
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Understanding the tripartite approach to Bayesian divergence time estimation 
Warnock, Wright. (2020)



Using PCMs for dating

61

c

d

L1

L2

L3
5 15 25 35

5

10

15

20

25

Time (days)

Si
ze

 (m
m

)

ba

0
0 1 2 3 4

1

2

3

4
D12

D13

0
1

2

3

4

Trait 1

Trait 2

Tr
ai

t 3

x1

x2...
xp

y1

y2...
yp

z1

z2...
zp

L1   L2   L3 β0   β1  · · ·  βp ƒx0   ƒx1  · · ·  ƒxp

Image source Adams & Collyer (2019)
Álvarez-Carretero et al. (2019) Bayesian Estimation of Species Divergence 
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Cultural evolution
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←Typo-Chronology of 
Palaeolithic stone tools

After Nicolas (2017)

Outline based NJ tree →

Matzig et al. 2021. 
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The tree topology 
of stone tools 
exhibits a lot of 
uncertainty

Matzig et al. (in review) A macroevolutionary 
analysis of European Late Upper Palaeolithic 
stone tool shape using a Bayesian phylodynamic 
framework (preprint available)
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