Phylogenetics Introduction to molecular dating RL-V3 MPP

Rachel Warnock 16.05.25

Can you try installing the following R packages?

- TreeSim
- FossilSim

Today's objectives

- Homework
- Recap
 - Bayesian inference
 - MCMC
- Intro to molecular dating

Recap

Pr(data | model) Pr(model)

Pr(model | data) =

Likelihood

Pr(model | data) =

The probability of the data given the model assumptions and parameter values

Pr(data | model) Pr(model)

Pr(data | model) Pr(model)

Pr(model | data) =

This represents our prior knowledge of the model parameters

Priors

Pr(data | model) Pr(model)

Pr(model | data) =

Pr(data)

Marginal probability

The probability of the data, given all possible parameter values. Can be thought of as a normalising constant

Reflects our combined knowledge based on the likelihood and the priors

posterior

Pr(data | model) Pr(model)

Pr(model | data) =

Bayesian tree inference

posterior

Recap

How do we find the 'best' tree?

It depends how you measure 'best'

Method	Criterion (tree s
Maximum parsimony	Minimum num
Maximum likelihood	Likelihood scor and model para
Bayesian inference	Posterior proba model paramet

Both maximum likelihood and Bayesian inference are model-based approaches

Note these are not the only approaches to tree-building but they are the most widely used

score)

ber of changes

re (probability), optimised over branch lengths

ameters

ability, integrating over branch lengths and ters

Introduction to molecular dating

What can we learn from trees?

Evolutionary relationships

What can we learn from trees?

- Evolutionary relationships
- Timing of diversification events
- Geological context
- Rates of phenotypic evolution
- Diversification rates

Image adapted from *Friedmann et al.* (2013)

Molecular (or morphological) characters are not independently informative about time

branch lengths = genetic distance v = rt

ATGCATGC TTGCCTGC TTGCATCG **ATGCATCG ATGCATG TTGCCTGG** TAGCGTGC TAGCGAGC

Slow rate, long interval or fast rate, short interval?

Goal: to disentangle evolutionary rate and time

Molecular (or morphological) characters are not independently informative about time

branch lengths = time

ATGCATGC TTGCCTGC TTGCATCG **ATGCATCG ATGCATG TTGCCTGG TAGCGTGC** TAGCGAGC

Goal: to disentangle evolutionary rate and time

The molecular clock hypothesis

Molecules as documents of evolutionary history *Zuckerkandl & Pauling* (<u>1965</u>) A history of the molecular clock *Morgan* (<u>1998</u>)

Shark

carp

) 500

Calibrating the substitution rate

branch lengths = time

ATGCATGC | TTGCATCG | ATGCATCG | ATGCATGG | TAGCGTGC | TAGCGAGC |

Temporal evidence of divergence for one species pair let's us calibrate the average rate of molecular evolution

Calibrating the substitution rate

branch lengths = time

ATGCATGC | TTGCATCG | ATGCATCG | ATGCATGG | TAGCGTGC | TAGCGAGC |

We can use this rate to extrapolate the divergence times for other species pairs

Molecular dating: challenges Rate and time are not fully identifiable!

branch lengths = genetic distance v = rt

ATGCATGC TTGCCTGG ATGCATCG ATGCATGG TTGCCTGG TAGCGTGC TAGCGAGC

Many variables contribute to variation in the substitution rate

Bromham et al. (2015)

Many variables contribute to variation in the substitution rate

The molecular clock is not constant

Rates vary across:

- taxa
- time
- genes
- sites within the same gene

Molecular evolution:

Morphological evolution:

Molecular evolution:

Morphological evolution:

Molecular evolution:

Morphological evolution:

Molecular evolution:

Morphological evolution:

- 1. Fossil minimum
- 2. Acquisition of apomorphy
- 3. Most probable divergence time

Molecular dating: challenges Summary

- 1. Rate and time are not fully identifiable
- 2. The substitution rate varies
- 3. Calibrations are imprecise

\rightarrow we need a flexible statistical framework that deals well with uncertainty!

Bayesian divergence time estimation

We use a Bayesian framework priors likelihood P(data | model) P(model)

P(model | data) =

P(data)

marginal probability of the data

Bayesian divergence time estimation

The data

and / or

0101... ATTG... 1101... TTGC... 0100... ATTC...

phylogenetics sample characters ages

substitution model

3 model components

clock model

tree and tree model

Understanding the tripartite approach to Bayesian divergence time estimation Warnock, Wright. (2020) 33

tree model

substitution model

How have rates of evolution varied (or not) across the tree?

tree model clock model

substitution model

How have species originated, gone extinct and been sampled through time?

Bayesian divergence time estimation

posterior

likelihood

probability of the time tree

priors

Calculating the likelihood Х Clock rate (subs/site/year) Time (year) **Prior** Prior Based on the calibration times we can estimate the rate over time

Likelihood

Once we have the rate we can transform evolutionary rates in genetic distance

Slide adapted from Sebastian Duchene 38

Node dating

We can use a calibration density to constrain internal node ages

We typically use a birth-death process model to describe the tree generating process

Adapted from Heath 2012. Sys Bio

The clock model describes how evolutionary rates vary (or not) across the tree

clock model

The strict / constant molecular clock model

Assumptions

- The substitution rate is constant over time
- All lineages share the same rate

Relaxed clock models

Assumptions

Lineage-specific rates

 The rate assigned to each branch is drawn from some underlying distribution

Graphical models: strict clock model

- a) Constant node
 - **b**) Stochastic node
 - **c**) Deterministic node
 - d) Clamped node (observed)

e) Plate

exponential

Graphical models: relaxed clock model

- b) Stochastic node
- c) Deterministic node
- **d**) (
- d) Clamped node (observed)

e) Plate

There are many different clock models

- Strict clock
- Uncorrelated or independent clock (= the favourite)
- Autocorrelated clock
- Local clocks
- Mixture models

The changing face of the molecular evolutionary clock. Ho. <u>2014</u> See also: *Warnock, Wright*. <u>2020</u>. Elements of Paleontology 45

Exercise (demo only)

Applications of node dating

Hypothesis testing: did the break up of Gondwana drive the radiation of cichlids?

Image adapted from *Friedmann et al.* (2013)

Very large trees can only be time-calibrated using a node dating approach

Álvarez-Carretero et al. (2021) - 4,705 mammal species

Dermoptera

33.2–9.4

Q21

Primates

64.3-61.8

65.6-42.9

Dating with sparse calibration information

Davín et al. (<u>2025</u>)

A geological timescale for bacterial evolution, calibrated using atmospheric oxygenation and the spread of aerobic metabolism

Biogeographic calibrations

Landis (2017, 2021)

Step III: Estimation

Step III-a

Estimate posterior ages from molecular data and node prior

Dating gene or genome duplication events

Álvarez-Carretero et al. (2021) - 4,705 mammal species

Times and rates are not fully identifiable!

Prior

Prior

Likelihood

Slide adapted from Sebastian Duchene

The priors will always influence the results

dos Reis et al. 2015. Nature Reviews Genetics

