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About this course

The course is tau7ht in two parts: 
• Block course, Mon 14.04.25 - Wed 16.04.25, Henke Str. 
• Summer semester, Thursdays 14:00–16:00 CET at Henke Str.  

Classes will consist of lectures and exercises + 6 weeks project work 

All lecture material available via the course website 

Blue underlined text → external links

2

https://phylogenetics-fau.netlify.app
https://en.wikipedia.org/wiki/Phylogenetics


Course objectives

To learn the application of phylo7enetic tools in paleobiolo7y 

• Tree buildin7 
• Substitution models 
• Datin7 trees 
• Clock models 
• Tree models
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• Diversification rates 
• Morpholo7ical models 
• Continuous trait evolution 
• …



Course evaluation

“Phylo7enetics” is 7raded to7ether with “Introduction to Statistical Modellin7”  
(course code: RL-V3 MPP) 

Class exercises are mainly in R or the Bayesian phylo7enetic software 
RevBayes 

In addition, we have homework exercises that include videos and readin7 

Evaluation is based on a written report (info available on the project pa7e)
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https://www.r-project.org/about.html
https://revbayes.github.io
https://phylogenetics-fau.netlify.app/projects


Please ask questions!
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Objectives

• Recap ‘tree-thinkin7’ 

• Gain an understandin7 of the 
parsimony approach to tree-
buildin7 and statistical 
inconsistency
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Time tree from Darwin’s Origin of Species 



What is phylogenetics?
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XK
DC

https://www.explainxkcd.com/wiki/index.php/3010:_Geometriphylogenetics


Phylo7enetics aims to reconstruct the phylo7eny of individual samples based on 
molecular or morpholo7ical character data 

A phylo7eny captures part of evolutionary history that is otherwise not directly 
observable 

Phylodynamics aims to quantify the processes that 7ave rise to the tree,  
e.7., speciation, extinction 

Phylogenetics
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Explore the tree of life using the Open Tree of Life tool, currently inc. 2,384,572 tips

https://tree.opentreeoflife.org


• populations  
• species 
• viruses 
• cells  
• lan7ua7es
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Data 
• DNA 
• morpholo7y 
• words

Time

In this course we mainly 
focus on trees that include 
one representative per 
species

Scots poem - also the BEAST2 loQo!

https://blogs.baruch.cuny.edu/poemofthemonth/2011/11/17/to-a-mouse/
https://www.beast2.org


Research topics in phylogenetics

This course!
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Applications Theory

Testing 
models

Implementing 
models

Empirical 
analysis

Exploring  model 
assumptions 

Deriving 
models

Data 
collection



Nothing in biology makes sense except in the 
light of evolution — Theodosius Dobzhansky (1973)
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Nothing in evolution makes sense except when 
seen in the light of phylogeny — Jay Savage (1997)

https://en.wikipedia.org/wiki/Nothing_in_Biology_Makes_Sense_Except_in_the_Light_of_Evolution


Trees in paleobiology
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How are our favourite species 
related? 

Does the phylo7eny support 
the taxonomy? 

What was the sequence of 
character evolution?

What can we learn from trees?
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Topology 
transforms our 
understanding of 
character evolution
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consider unproven to reanalyse a small fraction  
of published data sets2–4, and they reject the 
hypothesis that ctenophores are the sister 
group to other animals. But the authors’ asser-
tions are based on incomplete analyses and 
inappropriate assumptions, and their conclu-
sion is at odds with other studies, including 
two recent analyses11,12.  

A key point is that convergent evolution of 
complex characteristics is compatible with 
both the Ctenophora-sister and Porifera- 
sister hypotheses4,13. Morphological, functional 
or molecular complexity does not correlate 
with phylogeny. More than 550 million years 
of animal evolution has produced countless 
examples of independent gains and losses of 
complex structures14, and hypotheses based on 
the idea that morphologically simpler animals 
came first should not be blindly accepted, nor 
should complex features be treated as single  
characteristics in phylogenetic analyses. 

Convergent evolution can be surmised if the 
system in question differs in structure, molec-
ular composition and mechanisms. This case 
is met for genes expressed in neurons and in 
smooth and striated muscles in ctenophores 
versus those in cnidarians and bilaterians15,16, 
implying that these features were not shared 
in the common ancestor. Integrative multi-
ple-trait analysis and direct microanalytical  
measurements have demonstrated that cteno-
phores possess distinct neural machinery4, and 
there are no known pan-neuronal or neural 
genes that are shared by all animals17.

In fact, neural systems should not be  
considered as a single character in evolu-
tionary reconstructions. They are composed 
of highly distinct cell populations with 

different histories and origins, and relationships  
between these different cell lineages across 
phyla must be reconstructed to decipher neu-
ronal genealogies. Furthermore, the place-
ment of the nerveless Placozoa in Pisani and 
colleagues’ tree challenges the assumption of 
a single origin of the nervous system (Fig. 1). 
Placing either sponges or ctenophores as sister 
to all other animals does not alter the possi-
ble scenario of independent origins of neural 
systems13,15 nor of muscles in ctenophores4,16. 

Several uncertainties about phylogenomic 
analyses are also illustrated by Pisani and col-
leagues’ approaches. The authors assert that 
CAT models, which correct for variation 
between amino-acid positions8, outperform 
models used in other studies2–4. However, 
other studies2,4 applied a different model to 
each partition in the data set, whereas Pisani 
and colleagues’ validation approach uses 
only a single model across the entire data 
set. The authors’ justification for superiority 
of CAT models is also based on assumptions 
about the ‘true tree’, including the placement 
of sponges, leading to a circular argument7. 
Moreover, CAT models are computation-
ally demanding, and can produce conflicting 
results1,7,11,12 or fail to run to completion1–4, 
and Pisani et al. discuss several incomplete  
analyses as providing support for the Porifera-
sister hypothesis. 

The authors chose to use only the taxon 
most closely related to animals (unicellular and 
colonial choanoflagellates) as the outgroup on 
their animal tree. It is not clear whether this 
assumption was made because it yielded a 
Porifera-sister tree or in response to objective  
criteria. The approach used does not allow for 

the control of potential artefacts, such as the 
fact that choanoflagellates and some sponges 
have markedly different amino-acid compo-
sition from most animals, which could lead 
to incorrect rooting of the animal tree. Prior 
analyses2,4 that have thoroughly explored out-
group choice with objective criteria support 
the ctenophore-sister hypothesis. 

Finally, it is worth considering other lines of 
evidence alongside phylogenetic reconstruc-
tions. Morphological characteristics that seem 
to unite the choanocyte cells of sponges with 
choanoflagellates may not actually be homolo-
gous18. And palaeontological evidence for the 
appearance of sponges during the Cryogenian 
period (around 850 million to 635 million 
years ago) has been challenged19. Confirmed 
sponge fossils appeared only with most other 
animal groups, near the transition from the 
Ediacaran to the Cambrian period, around 
540 million years ago19. The Porifera-sister 
hypothesis, as promoted by Pisani et al., needs 
further scrutiny from both phylogenomic and 
other standpoints. By contrast, analyses based 
on objective criteria favour the Ctenophore-
sister hypothesis and parallel evolution of  
animal complexities across phyla. ■

Leonid L. Moroz  is at the Whitney 
Laboratory for Marine Bioscience, University 
of Florida, St Augustine, Florida 32080, USA, 
and in the Department of Neuroscience and 
at the McKnight Brain Institute, University of 
Florida, Gainesville. Kenneth M. Halanych 
is in the Department of Biological Sciences, 
Auburn University, Auburn, Alabama 36849, 
USA. 
e-mails: moroz@whitney.ufl.edu;  
ken@auburn.edu 
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Figure 1 | The animal tree. There is debate over whether Porifera (sponges) or Ctenophora (comb jellies)  
were the first group to branch off from the animal tree.  a, Porifera have typically been considered the 
simplest group, because they lack muscles and neurons, which are present in Ctenophora, Cnidaria 
(jellyfishes, corals and related species) and Bilateria (other animals). b, However, some phylogenetic 
analyses have suggested that Porifera are more closely related than Ctenophora to Bilateria and Cnidaria. 
(Placozoa, generally classified as the single species Trichoplax adhaerens, are consistently placed as the 
sister group of Cnidaria and Bilateria, but also lack neurons and muscles.)
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https://www.nature.com/articles/529286a


What can we learn 
from trees?
• Evolutionary relationships
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What can we learn 
from trees?
• Evolutionary relationships 

• Timin7 of diversification events 

• Geolo7ical context 

• Rates of phenotypic evolution 

• Diversification rates
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Where do we begin?
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Some basic terms
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A

B
C

D

E

internal nodesor MRCAs

tipsor leaves

branchesor edges

branch lengths = genetic distance or time

root

MRCA = most 
recent common 
ancestor

How to read a phyloQenetic tree

https://artic.network/how-to-read-a-tree.html


The direction of time
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Computer science,maths Geology Evolutionary biology

Tip look for the 
root!



Unrooted vs. rooted trees
Two types of trees
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Branch lengths in 
both trees 
represents 
genetic distance

A rooted tree 
shows the 
direction of time

Trees can be 
rooted using an 
outgroup
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Phylogenies are unrooted by default, because phylogenetic data don't 
directly contain information about the direction of time
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data
matrix vertebrae amniotic egg diapsid

skull
mandibular
fenestra feathers

frog 1 0 0 0 0
mammal 1 1 0 0 0
lizard 1 1 1 0 0
crocodile 1 1 1 1 0
bird 1 1 1 1 1

fro
g

mam
mal

liz
ard

cro
co

dil
e

bir
d

GAIN vertebrae

GAIN amniotic egg

GAIN diapsid skull

GAIN mandibular fenestra

GAIN feathers

Tree polarity and rooting

Slides adapted from Philip Donoghue
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data
matrix vertebrae amniotic egg diapsid

skull
mandibular
fenestra feathers

frog 1 0 0 0 0
mammal 1 1 0 0 0
lizard 1 1 1 0 0
crocodile 1 1 1 1 0
bird 1 1 1 1 1
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GAIN vertebrae
GAIN feathers, GAIN vertebrae, GAIN diapsid skull,
GAIN mandibular fenestra, GAIN amniotic egg

LOSS amniotic egg

LOSS diapsid skull

LOSS mandibular fenestra

LOSS feathers

Tree polarity and rooting

Slides adapted from Philip Donoghue
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We have to find a way of breaking one of the branches in two, where the break 
represents the oldest point in our tree 

The most common approach is to use an outgroup — a taxon that we know is more 
distantly related to everything else

24



Trees show the relationships among extant (living) bear species
Branch lengths = genetic or time
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Tip look at the 
axis
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Dated tree showing the 
relationship of extant and fossil 
bear species
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Image adapted from Jiangzuo and Flynn. (2020)

https://doi.org/10.1016/j.isci.2020.101235


• What do you think the correct rooted tree should be?
Write down your loAic 

• How many possible unrooted or rooted trees are there?
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Character Lamprey Antelope Bald ea7le Alli7ator Sea bass

Lun7s 0 1 1 1 0

Jaws 0 1 1 1 1

Feathers 0 0 1 0 0

Gizzard 0 0 1 1 0

Fur 0 1 0 0 0

So
ur

ce
 K

ha
n 

Ac
ad

em
y

‘0’ and ‘1’ represent 
absence or presence

https://en.wikipedia.org/wiki/Lamprey
https://en.wikipedia.org/wiki/Antelope
https://en.wikipedia.org/wiki/Bald_eagle
https://en.wikipedia.org/wiki/Alligator
https://en.wikipedia.org/wiki/Sea_bass
https://www.khanacademy.org/science/biology/her/tree-of-life/a/building-an-evolutionary-tree


There are a huge number of possible trees!
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n tips unrooted trees rooted trees

3 1 3

4 3 15

5 15 105

6 105 945

7 945 10395

8 10395 135135

9 135135 2027025

10 2027025 34459425

Number of branches, n 
 
unrooted tree 
2n−3 

rooted tree 
2n−2

See wiki for more on where these numbers come from

https://en.wikipedia.org/wiki/Phylogenetic_tree#Enumerating_trees
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https://www.khanacademy.org/science/biology/her/tree-of-life/a/building-an-evolutionary-tree


• Write down your loAic 

→ Most people intuitively assume the tree with the fewest chan7es is correct 

→ This approach to tree buildin7 is called maximum parsimony 
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How do we find the ‘best’ tree?
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It depends how you measure ‘best’

32

Method Criterion (tree score)

Maximum parsimony Minimum number of chan7es

Maximum likelihood
Likelihood score (probability), optimised over branch len7ths 
and model parameters

Bayesian inference
Posterior probability, inte7ratin7 over branch len7ths and 
model parameters 

Both maximum likelihood and Bayesian inference are model-based approaches 
 
Note these are not the only approaches to tree-buildin7 but they are the most widely used



Maximum parsimony

33

(also sometimes known as the minimum evolution method)



Maximum 
parsimony
The maximum parsimony tree is 
the unrooted tree with the lowest 
parsimony score  

The parsimony score of a tree is 
defined as the minimum number 
of chanAes required to explain the 
data summed across characters

34

 METHOD FOR DEDUCING PHYLOGENY 321

 Group A, including fossils A through E,
 again resulted in the correct cladogram.

 Two other studies of simulated phylog-

 enies showed that cladograms with little or
 moderate amounts of parallelism were re-

 constructed without error. Further work

 with hypothetical phylogenies led to the
 following tentative conclusions.

 1. If reversible characters greatly out-
 number irreversible ones, the most parsi-
 monious tree will probably be incorrect.

 However, if the reversible characters are
 not highly correlated with each other, the

 compatibility matrix will provide criteria
 for removing them prior to the reconstruc-

 tion and, if the remaining irreversible char-
 acters are numerous enough to give the
 correct cladogram, the most parsimonious
 tree will be correct.

 2. Parallel or miscoded convergent char-
 acters (Sokal and Camin, 1965) will not
 be detected as such when they outnumber
 divergent characters and will show as re-
 cent divergences in the most parsimonious
 tree. If divergent characters are more num-
 erous than others, the most parsimonious
 tree will show all evolutionary steps cor-
 rectly.

 Fossil Horses

 W. A. Clemens of the Zoology Depart-
 ment, The University of Kansas, kindly
 provided us with data on lineages of fossil
 horses. These lineages are reputedly among
 the best known in the animal kingdom. He
 chose species within those genera believed
 to represent some of the major lines of
 horse evolution (see Fig. 4), although the
 actual species are not necessarily in the
 direct cladistic lines. Characters chosen
 (Table 5) were among those considered
 significant by authorities in the field and
 for which data on all species used in the
 analysis were available. Table 6 shows the
 data matrix and the compatibility matrix
 from which the reconstruction shown in
 Fig. 4 can be obtained. Presumed ancestral

 forms are shown circled and by dashed

 stems.

 The reconstruction of equid cladistics is

 correct according to the studies of Stirton

 1 2 3 4 7 5 8 9 6 10

 \s \< 4~~~~~~

 2~~~~~~~~~~~~

 9 I 6

 It 3

 FIG. 4. Reconstructed cladogram of the fossil
 horses based on data in Table 6. The OTU code
 numbers and evolutionary steps are indicated as
 in Figs. 1 and 2. Character 3 has been recoded
 as explained in the text. Dashed branches repre-
 sent OTU's ancestral to others in the study. Their
 code numbers are also shown in circles at points
 of branching. There are 31 evolutionary steps in
 this cladogram, compared with a minimum num-
 ber of 20 (Table 6). OTU numbers represent the
 following fossil horse species: 1. Mesohippus
 barbouri Schlaikjer, Oligocene, data from Schlaik-
 jer (1932, 1935). 2. Hypohippus osborni Gidley,
 Miocene, data from Gidley (1907) and Osborn
 (1918). 3. Archaeohippus blackbergi (Hay),
 Miocene; following White (1942), A. nanus is
 regarded as a synonymous species. Generic refer-
 ence follows Stirton (1940). Data from Simpson
 (1932), White (1942), and Bader (1956). 4.
 Parahippus pristinus Osborn, Miocene, data from
 Osborn (1918). 5. Merychippus (Merychippus)
 seversus (Cope), Miocene, data from Downs
 (1956, 1961). 6. Merychippus (Protohippus)
 secundus Osborn, Miocene, data from Osborn
 (1918). 7. Nannipfus cf. minor (Sellards), Plio-
 cene, data from Lance (1950). 8. Neohipparion
 occidentale (Leidy), Pliocene, data from Gregory
 (1942). 9. Cclippus placidus (Leidy), Pliocene,
 data from Gidley (1906, 1907) and Osborn
 (1918). 10. Pliohippus mexicanus Lance, Plio-
 cene, data from Lance (1950).

 (1940) and of Simpson (1951). During
 the analysis two characters appeared to be
 miscoded. One of these (character 7) was

 discovered to have been erroneously tran-
 scribed and is shown corrected in Table

This content downloaded from 
� � � � � � � � � � � � 131.188.6.12 on Sun, 14 Apr 2024 10:50:33 +00:00� � � � � � � � � � � �  

All use subject to https://about.jstor.org/terms

Maximum parsimony first described in 
Edwards and Cavalli-Sforza (1964)

Phylogeny of fossil horses. It was (I think) the first tree 
constructed using parsimony and discrete morphological 
characters by Camin and Sokal (1965) — this study 
popularised the use of parsimony among systematists

https://www.cambridge.org/core/books/abs/phylogenetic-inference-selection-theory-and-history-of-science/reconstruction-of-evolutionary-trees/4348CEE7E5B8AF9F74825899DC834D1F
https://www.jstor.org/stable/2406441
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This tree is less 
parsimonious than 
the one on the left

https://www.khanacademy.org/science/biology/her/tree-of-life/a/building-an-evolutionary-tree


Parsimony can not identify the location of the root, so we can use an 
out7roup to root the tree 

There can be more than one tree with the same parsimony score 

Parsimony does not make explicit assumptions about the evolutionary 
process 

Maximum parsimony can only be used to estimate tree topolo7y

Maximum parsimony

36



Exercise
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Dunn et al., Sci. Adv. 2021; 7 : eabe0291     23 July 2021
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flexible support structure facilitated large body size among members 
of the Ediacaran macrobiota. Other authors have suggested the pres-
ence of internal struts in rangeomorph taxa [e.g., (10, 23)], but our 
data indicate that the internal skeleton is continuous with (i.e., not 
differentiated from) the outer integument, with the discontinuous 
internal divisions marked by external sulci at the margins between 
branches (Fig. 2C).

Morphogenesis of Charnia
Together, these data allow us to infer a model of morphogenesis for 
Charnia (Fig. 4). Lateral branches (11) are described as a pair of 
first-order branches that derive from the margins of the holdfast disc 
rather than from the central axis of the frond. We currently cannot 
infer their growth relative to the rest of the main frond; however, 
their presence does not interfere with interpretation of the main 
frond and so they have not been considered within these analyses. 
The first-order branch at the base of the frond is the oldest (it con-
tains the primary branch), and first-order branches differentiated in 
a baso-apical sequence, with new first-order branches added at the 
frond apex. The fundamental repeated unit, the first-order branch, 
appears to derive ultimately from a second-order branch of the pre-
ceding first-order branch (e.g., see the yellow and orange branches 
in Fig. 1B); its ultimate size is dictated by the position of the first-order 
branch that precedes it in sequence along the apical-basal axis. 
Because the number of second- to fourth-order branches within a 
first-order branch decreases along the main axis (along with first- 
order branch size) toward the apex, first-order branches must have 

grown through apical differentiation, as well as through inflation, for 
some time after they had moved from their apical position (Fig. 3 
and fig. S3). Thus, differentiation continued at the apex of individual 
first-order branches across the (known) life cycle of a frond.

Smaller specimens of Charnia underwent relatively little inflation 
in the more apical branches (fig. S3, A and B), but differentiated 
branches relatively rapidly (Fig. 3A). The shift in specimen outline 
model fit from logarithmic to linear (fig. S3) indicates that more basal 
branches were becoming relatively larger in more mature specimens, 
as compared to smaller specimens, confirming that inflationary 
growth became more important as Charnia aged. Larger specimens 
of Charnia appear to have shown a greater increase in the rate of 
differentiation up to ~22 cm in length (Fig. 3A) but inflation of 
pre-existing branches kept pace. The largest specimen of Charnia 
shows larger apical branches than other specimens, indicating that 
it had ceased or slowed the differentiation of first-order branches 
from the apical generative zone (Fig. 3B).

These data suggest that Charnia exhibited different phases of 
growth and exhibited a shift in the primary developmental mode, 
from the differentiation of first-order branches to inflation of pre- 
existing first-order branches (Fig. 4). This shift was gradual and 
polarized along the principal frond axis, such that the outline shape 
of fronds is both regular and predictable, rather than exhibiting 
abrupt changes as might be anticipated by categorical shifts in growth 
mode. Among all of the specimens we have examined, none have 
exhibited any evidence of aberrant growth (Fig. 4 and fig. S2). 
Furthermore, if the patterns we describe in Charnia are general to 
Rangeomorpha, this would preclude morphogenetic models that 
interpret rangeomorph anatomy as highly mutable (17).

Reconciling bodyplans among Rangeomorpha
Our informed understanding of the anatomy and morphogenesis 
of Charnia provides a basis for testing established hypotheses of 
homology between rangeomorph bodyplans. Previously, a central 
stalk or similar structure has been identified as a fundamental aspect 
of all rangeomorph bodyplans (14, 16). This assumption unites 
disparate rangeomorph anatomies, with the frond of Charnia inter-
preted as homologous to the frond of, for example, the genera 
Avalofractus or Pectinifrons (Fig. 5). However, our data demonstrate 
that Charnia does not have a stalk and, consequently, it is not pos-
sible to identify homology between bodyplans based on hierarchical 
branching patterns (Fig. 4). In Charnia, we observe first-order 
branches deriving from one another in sequence and, therefore, it is 
possible to find homology between the entire frond of Charnia and 
the single first-order branches in Avalofractus (which themselves 
do not appear to have a stalk). We identify a branching order 
that appears to exhibit a sympodial organization in all described 
rangeomorph taxa (Fig. 5A)—this is not the same branching 
order in every rangeomorph. This is the frame of reference from 
which it is most readily possible to rationalize disparate branching 
anatomies and distill the shared branching character of the group—
the rangeomorph frondlet. We concur with previous assessments 
that all rangeomorphs have a branching unit comprising no fewer 
than three branching orders [e.g., (13)] (though they need not be 
identical in their fossilized expression, as is the case with Charnia) 
that are interconnected and sympodially organized. This is distinct 
from previous definitions of the frondlet, which are incompatible with 
our data because they are based on branching units with (at least) 
three orders of identical branching (16), an anatomy not seen in Charnia.

Fig. 4. Model of morphogenesis in C. masoni. Green box represents an unknown 
stage in the life cycle. The shift in developmental mode (from primarily differentiation 
to primarily inflation) is illustrated, along with changes in relative branch measure-
ments, such as the position of the longest branch (the longest branch in each 
specimen is shown in orange), which moves basally through development. A single 
first-order branch is traced through all illustrated growth permutations. Colored 
secondary branches in the largest Charnia illustrate the conserved number of 
second-order branches before the differentiation of another first-order branch. 
Inset: Presumed growth trajectory of second-order branches.
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Phylogenetic affinity of the enigmatic Charnia
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Reconstructed Ediacaran fauna, 560 Ma
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#NEXUS 
 
[Matrix modified from Dunn (2016)] 

BEGIN DATA; 
 
DIMENSIONS  NTAX=10 NCHAR=117; 
    FORMAT DATATYPE = STANDARD SYMBOLS= " 0 1 2 3" MISSING=? GAP=- ; 

MATRIX 
 
Charnia      00?1??1??????????0???1?211201?????????0-?-???????? 
Laccaria     110?00100000000000-000--00--00---00--0--------000- 
Capsaspora    001011-00------000-00---00--------0-----------0-0- 
Monosiga     001000-11------000-00---00--------0-----------0-0- 
Sycon       00110011111111111110100110--0000000000----0---000- 
Amphimedon    00110011111111111121100110--00000000000---0---000- 
Trichoplax    001100111111100000-0000210--01111110000--00---000- 
Mnemiopsis    001100111111100000-0011211200110010111121110011110 
Nematostella   00110011111110000000112111001100101111111101111111 
Hydra       001100111111100000-0011211100110010111111110111111 

; 
 
END;

Initiates the nexus block
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#NEXUS 
 
[Matrix modified from Dunn (2016)] 

BEGIN DATA; 
 
DIMENSIONS  NTAX=10 NCHAR=117; 
    FORMAT DATATYPE = STANDARD SYMBOLS= " 0 1 2 3" MISSING=? GAP=- ; 

MATRIX 
 
Charnia      00?1??1??????????0???1?211201?????????0-?-???????? 
Laccaria     110?00100000000000-000--00--00---00--0--------000- 
Capsaspora    001011-00------000-00---00--------0-----------0-0- 
Monosiga     001000-11------000-00---00--------0-----------0-0- 
Sycon       00110011111111111110100110--0000000000----0---000- 
Amphimedon    00110011111111111121100110--00000000000---0---000- 
Trichoplax    001100111111100000-0000210--01111110000--00---000- 
Mnemiopsis    001100111111100000-0011211200110010111121110011110 
Nematostella   00110011111110000000112111001100101111111101111111 
Hydra       001100111111100000-0011211100110010111111110111111 

; 
 
END;

Comments go in square brackets 
 
Great for keeping track of data sources
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#NEXUS 
 
[Matrix modified from Dunn (2016)] 

BEGIN DATA; 
 
DIMENSIONS  NTAX=10 NCHAR=117; 
    FORMAT DATATYPE = STANDARD SYMBOLS= " 0 1 2 3" MISSING=? GAP=- ; 

MATRIX 
 
Charnia      00?1??1??????????0???1?211201?????????0-?-???????? 
Laccaria     110?00100000000000-000--00--00---00--0--------000- 
Capsaspora    001011-00------000-00---00--------0-----------0-0- 
Monosiga     001000-11------000-00---00--------0-----------0-0- 
Sycon       00110011111111111110100110--0000000000----0---000- 
Amphimedon    00110011111111111121100110--00000000000---0---000- 
Trichoplax    001100111111100000-0000210--01111110000--00---000- 
Mnemiopsis    001100111111100000-0011211200110010111121110011110 
Nematostella   00110011111110000000112111001100101111111101111111 
Hydra       001100111111100000-0011211100110010111111110111111 

; 
 
END;

Initiates the data block
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#NEXUS 
 
[Matrix modified from Dunn (2016)] 

BEGIN DATA; 
 
DIMENSIONS  NTAX=10 NCHAR=117; 
    FORMAT DATATYPE = STANDARD SYMBOLS= " 0 1 2 3" MISSING=? GAP=- ; 

MATRIX 
 
Charnia      00?1??1??????????0???1?211201?????????0-?-???????? 
Laccaria     110?00100000000000-000--00--00---00--0--------000- 
Capsaspora    001011-00------000-00---00--------0-----------0-0- 
Monosiga     001000-11------000-00---00--------0-----------0-0- 
Sycon       00110011111111111110100110--0000000000----0---000- 
Amphimedon    00110011111111111121100110--00000000000---0---000- 
Trichoplax    001100111111100000-0000210--01111110000--00---000- 
Mnemiopsis    001100111111100000-0011211200110010111121110011110 
Nematostella   00110011111110000000112111001100101111111101111111 
Hydra       001100111111100000-0011211100110010111111110111111 

; 
 
END;

Number of taxa and 
characters in the matrix
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#NEXUS 
 
[Matrix modified from Dunn (2016)] 

BEGIN DATA; 
 
DIMENSIONS  NTAX=10 NCHAR=117; 
    FORMAT DATATYPE = STANDARD SYMBOLS= " 0 1 2 3" MISSING=? GAP=- ; 

MATRIX 
 
Charnia      00?1??1??????????0???1?211201?????????0-?-???????? 
Laccaria     110?00100000000000-000--00--00---00--0--------000- 
Capsaspora    001011-00------000-00---00--------0-----------0-0- 
Monosiga     001000-11------000-00---00--------0-----------0-0- 
Sycon       00110011111111111110100110--0000000000----0---000- 
Amphimedon    00110011111111111121100110--00000000000---0---000- 
Trichoplax    001100111111100000-0000210--01111110000--00---000- 
Mnemiopsis    001100111111100000-0011211200110010111121110011110 
Nematostella   00110011111110000000112111001100101111111101111111 
Hydra       001100111111100000-0011211100110010111111110111111 

; 
 
END;

Details about the data
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#NEXUS 
 
[Matrix modified from Dunn (2016)] 

BEGIN DATA; 
 
DIMENSIONS  NTAX=10 NCHAR=117; 
    FORMAT DATATYPE = STANDARD SYMBOLS= " 0 1 2 3" MISSING=? GAP=- ; 

MATRIX 
 
Charnia      00?1??1??????????0???1?211201?????????0-?-???????? 
Laccaria     110?00100000000000-000--00--00---00--0--------000- 
Capsaspora    001011-00------000-00---00--------0-----------0-0- 
Monosiga     001000-11------000-00---00--------0-----------0-0- 
Sycon       00110011111111111110100110--0000000000----0---000- 
Amphimedon    00110011111111111121100110--00000000000---0---000- 
Trichoplax    001100111111100000-0000210--01111110000--00---000- 
Mnemiopsis    001100111111100000-0011211200110010111121110011110 
Nematostella   00110011111110000000112111001100101111111101111111 
Hydra       001100111111100000-0011211100110010111111110111111 

; 
 
END;

Initiates the data matrix
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#NEXUS 
 
[Matrix modified from Dunn (2016)] 

BEGIN DATA; 
 
DIMENSIONS  NTAX=10 NCHAR=117; 
    FORMAT DATATYPE = STANDARD SYMBOLS= " 0 1 2 3" MISSING=? GAP=- ; 

MATRIX 
 
Charnia      00?1??1??????????0???1?211201?????????0-?-???????? 
Laccaria     110?00100000000000-000--00--00---00--0--------000- 
Capsaspora    001011-00------000-00---00--------0-----------0-0- 
Monosiga     001000-11------000-00---00--------0-----------0-0- 
Sycon       00110011111111111110100110--0000000000----0---000- 
Amphimedon    00110011111111111121100110--00000000000---0---000- 
Trichoplax    001100111111100000-0000210--01111110000--00---000- 
Mnemiopsis    001100111111100000-0011211200110010111121110011110 
Nematostella   00110011111110000000112111001100101111111101111111 
Hydra       001100111111100000-0011211100110010111111110111111 

; 
 
END;

Phylogenetic data matrix 

Taxon names left, characters 
right after tabs or spaces
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#NEXUS 
 
[Matrix modified from Dunn (2016)] 

BEGIN DATA; 
 
DIMENSIONS  NTAX=10 NCHAR=117; 
    FORMAT DATATYPE = STANDARD SYMBOLS= " 0 1 2 3" MISSING=? GAP=- ; 

MATRIX 
 
Charnia      00?1??1??????????0???1?211201?????????0-?-???????? 
Laccaria     110?00100000000000-000--00--00---00--0--------000- 
Capsaspora    001011-00------000-00---00--------0-----------0-0- 
Monosiga     001000-11------000-00---00--------0-----------0-0- 
Sycon       00110011111111111110100110--0000000000----0---000- 
Amphimedon    00110011111111111121100110--00000000000---0---000- 
Trichoplax    001100111111100000-0000210--01111110000--00---000- 
Mnemiopsis    001100111111100000-0011211200110010111121110011110 
Nematostella   00110011111110000000112111001100101111111101111111 
Hydra       001100111111100000-0011211100110010111111110111111 

; 
 
END;

Initiates the end of the data matrix
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#NEXUS 
 
[Matrix modified from Dunn (2016)] 

BEGIN DATA; 
 
DIMENSIONS  NTAX=10 NCHAR=117; 
    FORMAT DATATYPE = STANDARD SYMBOLS= " 0 1 2 3" MISSING=? GAP=- ; 

MATRIX 
 
Charnia      00?1??1??????????0???1?211201?????????0-?-???????? 
Laccaria     110?00100000000000-000--00--00---00--0--------000- 
Capsaspora    001011-00------000-00---00--------0-----------0-0- 
Monosiga     001000-11------000-00---00--------0-----------0-0- 
Sycon       00110011111111111110100110--0000000000----0---000- 
Amphimedon    00110011111111111121100110--00000000000---0---000- 
Trichoplax    001100111111100000-0000210--01111110000--00---000- 
Mnemiopsis    001100111111100000-0011211200110010111121110011110 
Nematostella   00110011111110000000112111001100101111111101111111 
Hydra       001100111111100000-0011211100110010111111110111111 

; 
 
END; Initiates the end of the nexus block
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Newick  
format
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Named after Newick’s Lobster House, North Carolina!

https://en.wikipedia.org/wiki/Newick_format


Statistical inconsistency
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The following slides are adapted from Tracy Heath (in turn adapted from Mark Holder)



Ideally, we want an inference method to return the correct answer if we 
provide enou7h data 

An estimator is statistically consistent if it is 7uaranteed to 7et the correct 
answer with an infinite amount of data 

It has been demonstrated that in some scenarios, parsimony is statistically 
inconsistent. The issue is known as lon7 branch attraction

Statistical consistency

50



A trait that is found in two species, but not 
in their common ancestor is an example of  
homoplasy 

We find widespread homoplasy in both 
morpholo7ical and molecular datasets

Convergent evolution
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Bird, Pterosaur (extinct), 
fruit bat: 3 different 
vertebrates independently 
lightened bones and 
transformed hands into 
wings 

Im
age source Convergent Evolution: an introduction 

https://convergentevolution.wordpress.com/2015/04/16/hello-world/


Parsimony will always favour the tree 
with the smallest number of chan7es 

The method does not account for 
multiple transitions (or “hits”), e.7.,  
0 → 1 → 0 

We can only invoke conver7ent 
evolution ad hoc after inference

Convergence and parsimony
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T2

T3

T1

0

0

0

1
0→1

1→0

Hypothetical tree showing multiple 
transitions at the same character



Say we have the following tree, with 2 long and 2 short branches

Long branch attraction
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0.010.01 0.01

1.01.0

T1

T4

T3

T2

0.01

0.01

1.0

1.0

T2

T3
T4

T1

Branch lengths 
represent the 
probability of 
change along 
that branch

The rooted version 
of the same tree



Long branch attraction
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Some time 
in the past

0.010.01 0.01

1.01.0

0

1

1

0
0.010.01 0.01

1.01.0

1

1

0

0(T2)

(T1) (T3)

(T4) (T2)

(T1) (T3)

(T4)

A transition somewhere 
along the branch that 
separates (T1, T2) and 
(T3, T4)

Subsequent transitions 
along the branches 
leading to T1 and T3



Long branch attraction

Parsimony is almost 7uaranteed to 
7et this tree wron7 

And more data makes this problem 
worse, meanin7 this approach is 
statistically inconsistent 

This issue has been thorou7hly 
characterised for molecular data
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T2

T3

T4

T1

T2

T3

T4

T1

True tree

Parsimony tree
Felsenstein (1978) 
Felsenstein (2004), Inferring Phylogenies

https://www.jstor.org/stable/2412923


Long branch attraction
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qq q

pp

T1

T4

T3

T2Branch lengths 
represent the 
probability (p, q) 
of change along 
that branch

The area in grey, is the area of parameter space where 
you are almost guaranteed to recover the wrong tree, 
with increasing certainty the more data you have

Im
age source Tracy H

eath

Felsenstein (2004), Inferring Phylogenies



57Swafford et al. (2001)

https://www.jstor.org/stable/3070852


A classic case of LBA

The relationship between nematodes, 
arthropods, and chordates was 
misunderstood for a lon7 time 

• Ecdysozoa* 
(arthropods, nematodes), vertebrates 

• Coelomata 
(arthropods, vertebrates), nematodes

58
*widely accepted today, Image: Telford et al. (2005)

yeast

nematodes

chordates

arthropods

https://www.sciencedirect.com/science/article/pii/S0960982205003714


Parsimony in paleobiology
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This was the first paper to show that the 
same LBA issues that affect molecular 
data probably also affect morpholo7y 

Wright and Hillis (2014) 

A slue of papers followed… 
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Bayesian Analysis Using a Simple Likelihood Model

Outperforms Parsimony for Estimation of Phylogeny

from Discrete Morphological Data
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Abstract

Despite the introduction of likelihood-based methods for estimating phylogenetic trees from phenotypic data, parsimony

remains the most widely-used optimality criterion for building trees from discrete morphological data. However, it has been

known for decades that there are regions of solution space in which parsimony is a poor estimator of tree topology. Numerous

software implementations of likelihood-based models for the estimation of phylogeny from discrete morphological data exist,

especially for the Mk model of discrete character evolution. Here we explore the efficacy of Bayesian estimation of phylogeny,

using the Mk model, under conditions that are commonly encountered in paleontological studies. Using simulated data, we

describe the relative performances of parsimony and the Mk model under a range of realistic conditions that include common

scenarios of missing data and rate heterogeneity.
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Introduction

For many decades, parsimony methods have been the most

widely used approaches for estimation of phylogeny from discrete

phenotypic data, despite the availability of likelihood-based

methods for phylogenetic analysis. Maximum likelihood and

Bayesian methods are commonly used in data sets combining

molecules and morphology [1–5], but are used less frequently in

morphology-only data sets [6]. As such, the efficacy of these

methods under a range of conditions is not well-explored. In

particular, the conditions that are investigated in most paleonto-

logical studies (many characters missing across sampled taxa, and

rate heterogeneity among different sampled characters) lead some

investigators to raise questions about the applicability of model-

based approaches under these conditions [6–9].

At the present, the most widely implemented (in both pure

likelihood and Bayesian contexts) model for estimating phyloge-

netic trees from discrete phenotypic data is the Mk model

proposed by Lewis [10]. This model is a generalization of the 1969

Jukes-Cantor model of nucleotide sequence evolution [11]. The

Mk model assumes a Markov process for character change,

allowing for multiple character-state changes along a single

branch. The probability of change in this model is symmetrical;

in other words, the probability of changing from one state to

another is the same as change in the reverse direction. This

assumption can be relaxed in Bayesian implementations through

the use of a hyperprior allowing variable change probabilities

among states [12–14]. As many morphologists collect only variable

or parsimony-informative characters (i.e., characters that can be

used to discriminate among different tree topologies under the

parsimony criterion), the distribution of characters collected does

not reflect the distribution of all observable characters. This

sampling bias can lead to poor estimation of the rate of character

evolution within a data set, as well as inflated estimates of

character change along branches of the estimated tree. To

counteract this bias, Lewis [10] introduced versions of the Mk

model that correct for biases in character collection. These

versions were subsequently shown to have the desirable quality of

statistical consistency [15].

Sampled characters within data sets typically evolve under

different rates, developmental processes, and modes of evolution

[7,16,17]. Although heterogeneity in the underlying evolutionary

processes can present challenges to the application of evolutionary

models [18], a distribution of different evolutionary rates of

characters can be helpful for resolving branches at different levels

in the tree. Extremely labile characters, for example, are useful for

resolving recently diverged lineages, whereas slowly evolving

characters may be more useful for resolving deep divergences in

the tree. Likelihood-based methods can benefit from this

heterogeneity by accounting for different rates of character

evolution and the amount of time available for change (based on

the estimated branch lengths in the tree; [19]). In contrast, high

levels of rate heterogeneity among characters can be more

problematic for parsimony methods, especially if all character

changes are weighted equally [20].

PLOS ONE | www.plosone.org
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Despite the introduction of likelihood-based methods for estimating phylogenetic trees from phenotypic data, parsimony

remains the most widely-used optimality criterion for building trees from discrete morphological data. However, it has been

known for decades that there are regions of solution space in which parsimony is a poor estimator of tree topology. Numerous
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Introduction

For many decades, parsimony methods have been the most

widely used approaches for estimation of phylogeny from discrete

phenotypic data, despite the availability of likelihood-based

methods for phylogenetic analysis. Maximum likelihood and

Bayesian methods are commonly used in data sets combining

molecules and morphology [1–5], but are used less frequently in

morphology-only data sets [6]. As such, the efficacy of these

methods under a range of conditions is not well-explored. In

particular, the conditions that are investigated in most paleonto-

logical studies (many characters missing across sampled taxa, and

rate heterogeneity among different sampled characters) lead some

investigators to raise questions about the applicability of model-

based approaches under these conditions [6–9].

At the present, the most widely implemented (in both pure

likelihood and Bayesian contexts) model for estimating phyloge-

netic trees from discrete phenotypic data is the Mk model

proposed by Lewis [10]. This model is a generalization of the 1969

Jukes-Cantor model of nucleotide sequence evolution [11]. The

Mk model assumes a Markov process for character change,

allowing for multiple character-state changes along a single

branch. The probability of change in this model is symmetrical;

in other words, the probability of changing from one state to

another is the same as change in the reverse direction. This

assumption can be relaxed in Bayesian implementations through

the use of a hyperprior allowing variable change probabilities

among states [12–14]. As many morphologists collect only variable

or parsimony-informative characters (i.e., characters that can be

used to discriminate among different tree topologies under the

parsimony criterion), the distribution of characters collected does

not reflect the distribution of all observable characters. This

sampling bias can lead to poor estimation of the rate of character

evolution within a data set, as well as inflated estimates of

character change along branches of the estimated tree. To

counteract this bias, Lewis [10] introduced versions of the Mk

model that correct for biases in character collection. These

versions were subsequently shown to have the desirable quality of

statistical consistency [15].

Sampled characters within data sets typically evolve under

different rates, developmental processes, and modes of evolution

[7,16,17]. Although heterogeneity in the underlying evolutionary

processes can present challenges to the application of evolutionary

models [18], a distribution of different evolutionary rates of

characters can be helpful for resolving branches at different levels

in the tree. Extremely labile characters, for example, are useful for

resolving recently diverged lineages, whereas slowly evolving

characters may be more useful for resolving deep divergences in

the tree. Likelihood-based methods can benefit from this

heterogeneity by accounting for different rates of character

evolution and the amount of time available for change (based on

the estimated branch lengths in the tree; [19]). In contrast, high

levels of rate heterogeneity among characters can be more

problematic for parsimony methods, especially if all character

changes are weighted equally [20].
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Bayesian methods outperform parsimonybut at the expense of precision in theestimation of phylogeny from discretemorphological data
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James E. Tarver1, James Fleming1, Davide Pisani1,2 and Philip C. J. Donoghue1
1School of Earth Sciences, and 2School of Biological Sciences, University of Bristol, Life Sciences Building,
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ary history and, currently, there is no definitive method for phylogenetic
reconstruction using morphological data. Parsimony has been the primary
method for analysing morphological data, but there has been a resurgence
of interest in the likelihood-based Mk-model. Here, we test the performance
of the Bayesian implementation of the Mk-model relative to both equal and
implied-weight implementations of parsimony. Using simulated morphologi-
cal data, we demonstrate that the Mk-model outperforms equal-weights
parsimony in terms of topological accuracy, and implied-weights performs
the most poorly. However, the Mk-model produces phylogenies that have
less resolution than parsimony methods. This difference in the accuracy and
precision of parsimony and Bayesian approaches to topology estimation
needs to be considered when selecting a method for phylogeny reconstruction.

1. Introduction
Morphology once provided the only means of inferring evolutionary trees, but it

was effectively rendered obsolete by molecular sequence data and the development

of sophisticated molecular evolutionary models for phylogenetic analysis [1]. How-

ever, with the recognition that fossil species are integral to correctly inferring

patterns of character evolution and changes in diversity, as well as in establishing

evolutionary timescales, morphological data are enjoying a phylogenetic renais-

sance [2], allowing fossil species to be assigned to their correct branches in the

Tree of Life. Methods for phylogenetic analysis of morphological data remain

underdeveloped and though likelihood models are available that may more

accurately accommodate the vagaries of morphological datasets [3], including

high rates of heterogeneity and a preponderance of missing data [4], parsimony

remains the method of choice, principally perhaps as a consequence of tradition.

Indeed, a recent simulation-based study by Wright & Hillis [5] demonstrated that

a Bayesian implementation of Lewis’s Mk-model [3] strongly outperforms parsi-

mony, especially when rates of character change are high, or when relatively few

characters are analysed. The conclusions drawn by Wright & Hillis [5] were

based on data effectively simulated using the Mk-model, potentially biasing the

test in favour of the Mk-model. Furthermore, they did not consider whether the

simulated data exhibited realistic levels of homoplasy, analysed unrealistically

large simulated datasets, and evaluated only the relative performance of
& 2016 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution

License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original

author and source are credited.
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Abstract: Implied weighting, a method for phylogenetic
inference that actively seeks to downweight supposed homo-
plasy, has in recent years begun to be widely utilized in
palaeontological datasets. Given the method’s purported
ability at handling widespread homoplasy/convergence, we
investigate the effects of implied weighting on modelled phylo-
genetic data. We generated 100 character matrices consisting
of 55 characters each using a Markov Chain morphology
model of evolution based on a known phylogenetic tree. Rates
of character evolution in these datasets were variable and gen-
erated by pulling from a gamma distribution for each character
in the matrix. These matrices were then analysed under equal
weighting and four settings of implied weights (k = 1, 3, 5,

and 10). Our results show that implied weighting is inconsis-
tent in its ability to retrieve a known phylogenetic tree. Equally
weighted analyses are found to generally be more conservative,
retrieving higher frequency of polytomies but being less likely
to generate erroneous topologies. Implied weighting is found
to generally resolve polytomies while also propagating errors,
resulting in an increase in both correctly and incorrectly
resolved nodes with a tendency towards higher rates of error
compared to equal weighting. Our results suggest that equal
weights may be a preferable method for parsimony analysis.
Key words: phylogenetic methods, cladistics, homoplasy,
implied weights, parsimony, phylogeny.

THE advent of computationally based phylogenetic meth-
ods has had a dramatic effect on the manner in which we
study evolution. Utilizing an optimization criterion such
as parsimony, likelihood or posterior probability, biolo-
gists can take molecular and morphological characteristic
data and generate phylogenetic hypotheses of relationship.
Palaeontological studies have traditionally utilized maxi-
mum parsimony over parametric phylogenetics to recon-
struct the evolutionary relationships of fossil taxa,
potentially a legacy issue owing to the likelihood models
for morphological character change being derived from
modifications to models developed for nucleotide evolu-
tion (Lewis 2001; Wright & Hillis 2014). Parsimony itself,
however, is not a model-less system (see Holder et al.
2010; Huelsenbeck et al. 2011; and references therein),
and while the underlying basis of parsimony is to explain
phylogenetic relationships while invoking the fewest num-
ber of character changes possible given the data, there has
recently been a push towards a different form of opti-
mization that seeks to maximize the total fit of characters
on the tree through implied weighting (Goloboff 1993).

The fit of a character is defined by the interplay of the
number of changes the character undergoes, the mini-
mum number of changes possible for the character, and a
concavity constant that influences how severely homopla-
sious characters are downweighted. This results in a tree
being selected based on the weights it assigns its charac-
ters given the topology, not the number of character
changes itself. Although a number of palaeontological and
neontological studies have experimented with implied
weights (e.g. Mirande 2009; Cruz Mendes 2011; Cerde~no
et al. 2012; Weiss et al. 2012), the method has largely
failed to gain traction among biological workers since it
has been considered to be largely non-parsimonious
(Turner & Zandee 1995), only becoming actively used in
other fields such as parsimony analyses of endemicity
(Morrone 2014). The method is, however, getting a fair
amount of exposure in palaeontological studies where it
has been used to reduce the impact of homoplasy intro-
duced by the inclusion of juvenile ontogenetic stages in
analyses (e.g. Tschopp et al. 2015), to resolve the position
of volatile taxa (e.g. Xu & Pol 2014), as a stress test to© The Palaeontological Association
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Abstract

One of the lasting controversies in phylogenetic inference is the degree to which specific evolutionary models should influence

the choice of methods. Model-based approaches to phylogenetic inference (likelihood, Bayesian) are defended on the premise

that without explicit statistical models there is no science, and parsimony is defended on the grounds that it provides the best

rationalization of the data, while refraining from assigning specific probabilities to trees or character-state reconstructions.

Authors who favour model-based approaches often focus on the statistical properties of the methods and models themselves,

but this is of only limited use in deciding the best method for phylogenetic inference—such decision also requires considering

the conditions of evolution that prevail in nature. Another approach is to compare the performance of parsimony and model-

based methods in simulations, which traditionally have been used to defend the use of models of evolution for DNA sequences.

Some recent papers, however, have promoted the use of model-based approaches to phylogenetic inference for discrete morpho-

logical data as well. These papers simulated data under models already known to be unfavourable to parsimony, and modelled

morphological evolution as if it evolved just like DNA, with probabilities of change for all characters changing in concert along

tree branches. The present paper discusses these issues, showing that under reasonable and less restrictive models of evolution

for discrete characters, equally weighted parsimony performs as well or better than model-based methods, and that parsimony

under implied weights clearly outperforms all other methods.
© The Willi Hennig Society 2017.

Introduction

In recent years, a number of papers have used simu-
lations to examine different methods for phylogenetic
analysis of discrete morphological data. Wright and
Hillis (2014), with the aim of encouraging palaeontolo-
gists to “adopt model-based approaches”, used their
simulations to conclude that MrBayes (Ronquist et al.,
2012) with the so-called “Mk model” of Lewis (2001),
produces better trees than parsimony. Wright and Hil-
lis (2014) used a fixed model tree, taken from an ear-
lier empirical study on amphibians, and generated
their data with Lewis’ model. In another paper,
O’Reilly et al. (2016) used the same model tree as
Wright and Hillis (2014) but a slightly different evolu-
tionary model to generate their data, comparing

Bayesian with parsimony analyses under both equal
and implied weighting (Goloboff, 1993). O’Reilly et al.
(2016) concluded that Bayesian analysis produces bet-
ter trees than equal-weights parsimony, and implied
weighting performs the worst of all three methods.
Congreve and Lamsdell (2016) concurred with the pre-
vious authors that the wider use of parsimony instead
of model-based methods to analyse palaeontological
data is only because of a “legacy issue” (p. 447)
instead of appropriateness. However, they provided no
comparison between parsimony and model-based
methods; they only compared parsimony with equal
and implied weights. Like O’Reilly et al. (2016), Con-
greve and Lamsdell (2016) concluded that parsimony
with equal weights is preferable to implied weighting.
The last study in the series of simulation papers, by
Puttick et al. (2017), is very similar in design to the
one by O’Reilly et al. (2016); the authors of Puttick
et al. (2017) include all the eight authors in O’Reilly
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Morphological data provide the only means of classifying the majority of life’s
history, but the choice between competing phylogenetic methods for the
analysis of morphology is unclear. Traditionally, parsimony methods have
been favoured but recent studies have shown that these approaches are less
accurate than the Bayesian implementation of the Mk model. Here we
expand on these findings in several ways: we assess the impact of tree shape
and maximum-likelihood estimation using the Mk model, as well as analysing
data composed of both binary and multistate characters. We find that all
methods struggle to correctly resolve deep clades within asymmetric trees,
and when analysing small character matrices. The Bayesian Mk model is the
most accurate method for estimating topology, but with lower resolution
than other methods. Equal weights parsimony is more accurate than implied
weights parsimony, and maximum-likelihood estimation using the Mk model
is the least accurate method. We conclude that the Bayesian implementation of
the Mk model should be the default method for phylogenetic estimation from
phenotype datasets, and we explore the implications of our simulations in rea-
nalysing several empirical morphological character matrices. A consequence
of our finding is that high levels of resolution or the ability to classify species
or groups with much confidence should not be expected when using small
datasets. It is now necessary to depart from the traditional parsimony para-
digms of constructing character matrices, towards datasets constructed
explicitly for Bayesian methods.

1. Introduction
The fossil record affords the only direct insight into evolutionary history of life on

the Earth, but the incomplete preservation and temporal distribution of fossils has

long prompted biologists to seek alternative perspectives, such as molecular phy-

logenies of living species, eschewing palaeontological evidence altogether [1].

However, there is increasing acceptance that analyses of historical diversity

cannot be made without phylogenies that incorporate fossil species [2,3] and cali-

brating molecular phylogenies to time cannot be achieved effectively without

recourse to the fossil record [4]. Integrating fossil and living species has become

the grand challenge and there has been a modest proliferation of phylogenetic

approaches to the analysis of phenotypic data. While conventional parsimony

remains the most widely employed method, alternative parsimony [5] and prob-

abilistic [6] models have been developed to better accommodate heterogeneity in
& 2017 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution

License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original

author and source are credited.
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Parsimony, not Bayesian analysis, recoversmore stratigraphically congruentphylogenetic trees
Robert S. Sansom1, Peter G. Choate2, Joseph N. Keating1 and Emma Randle1,3
1School of Earth and Environmental Sciences, and 2Faculty of Biology, Medicine and Health,
University of Manchester, Manchester M13 9PT, UK
3Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UKRSS, 0000-0003-1926-2556

Reconstructing evolutionary histories requires accurate phylogenetic trees.
Recent simulation studies suggest that probabilistic phylogenetic analyses of
morphological data are more accurate than traditional parsimony techniques.
Here, we use empirical data to compare Bayesian and parsimony phylogenies
in terms of their congruence with the distribution of age ranges of the
component taxa. Analysis of 167 independent morphological data matrices
of fossil tetrapods finds that Bayesian trees exhibit significantly lower strati-
graphic congruence than the equivalent parsimony trees. As such, taking
stratigraphic data as an independent benchmark indicates that parsimony
analyses are more accurate for phylogenetic reconstruction of morphological
data. The discrepancy between simulated and empirical studies may result
from historic data peaking practices or some complexities of empirical data
as yet unaccounted for.

1. Introduction
Phylogenetic trees are vital for reconstructing evolutionary events. Incorporating

morphology and fossils into phylogenetic analyses makes it possible to break up

long branches between living taxa, identify the sequences of events in the

construction of body plans, and reconstruct timescales and rates of evolution

by calibrating molecular clocks. Accurate phylogenetic placement is, therefore,

vital for reconstructing evolutionary history, but there is disagreement over

which method is most appropriate. Morphological data have traditionally been

analysed using maximum parsimony but recent investigations have indicated

that probabilistic methods outperform parsimony analyses in terms of accuracy

[1,2] (although see [3]). As such, Bayesian analysis (specifically the Mk model)

is suggested to be the preferred method for analysing morphological data [4].

Simulated data have been extremely powerful in this context, but simulations

can only ever approximate reality with varying levels of success. Empirical mor-

phological data are highly variable and intrinsically problematic in complex and

unsimulated ways. Homoplasy and non-independence of morphological charac-

ters are pervasive due to subjective and oversaturated character identification,

and functional, ecological and developmental linkage [5–8]. These problematic

phenomena are not evenly distributed across clades, characters and regions;

differences exist between hard and soft characters [9,10], teeth and bones [11],

and crania and post-crania [12]. Furthermore, non-random patterns of missing

data can distort the signal of remaining phylogenetic characters [9,13,14]. By con-

trast, simulated characters are effectively homogeneous, because they are selected

from the same underlying model.

& 2018 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution

License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original

author and source are credited.
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Associate Editor: Simon HoAbstract.—The Mkv evolutionary model, based on minor modifications to models of molecular evolution, is being

increasingly used to infer phylogenies from discrete morphological data, often producing different results from parsimony.

The critical difference between Mkv and parsimony is the assumption of a “common mechanism” in the Mkv model, with

branch lengths determining that probability of change for all characters increases or decreases at the same tree branches by

the same exponential factor. We evaluate whether the assumption of a common mechanism applies to morphology, by testing

the implicit prediction that branch lengths calculated from different subsets of characters will be significantly correlated.

Our analysis shows that DNA (38 data sets tested) is often compatible with a common mechanism, but morphology (86

data sets tested) generally is not, showing very disparate branch lengths for different character partitions. The low levels

of branch length correlation demonstrated for morphology (fitting models without a common mechanism) suggest that

the Mkv model is too unrealistic and inadequate for the analysis of most morphological data sets. [Bayesian analysis; Mkv

model; morphological data; phylogenetics.]

Discrete morphological characters, despite the pre-
dominance of molecular data sets, continue playing
an important role in inferring phylogenetic trees (e.g.,
as the sole source of evidence for most fossil taxa).
Parsimony (implemented in PAUP*, Swofford 2002, or
TNT, Goloboff and Catalano 2016) is widely used for
morphological data. The Mkv model (Lewis 2001),
based on minor modifications to models of molecular
evolution, is being increasingly used for phylogenetic
inference (Wright and Hillis 2014, O’Reilly et al. 2016,
Puttick et al. 2017), even when it is often acknowledged
that morphology and molecules may evolve in very
different ways (e.g., Lee 2016, Zhang 2018). The Mkv
model is implemented in several major phylogeny
programs such as PAUP*, MrBayes (Ronquist et al. 2012),
or RAxML (Stamatakis 2014). The Mkv model critic-
ally differs from parsimony in assuming a “common
mechanism” (CM, Tuffley and Steel 1997), in which
the probability of change in different tree branches
varies simultaneously for all characters, exponentially
depending on the “length” of the branch (expected
number of changes per character, the product of time and
instantaneous rate, both affecting all characters equally;
for details, see Swofford et al. 1996, Felsenstein 2004).
This assumption of a CM is in fact what Lewis (2001,
p. 915–916) considered that systematists would likely
find most unrealistic. Eliminating this commonality
assumption causes parsimony and likelihood to select
the same tree (e.g., with the “no-common-mechanism”
model of Tuffley and Steel 1997, Steel 2011; NCM);
if the data have indeed not evolved with common
branch lengths (e.g., with heterotachy), parsimony may
produce better results than model-based methods that

assume homogeneity (Kolaczkowski and Thornton 2004,
Goloboff et al. 2017).Although there have been no empirical comparisons
of molecules and morphology in terms of their fit
to a CM, patterns of change in discrete morpholo-
gical characters seem not to follow this assumption of
commonality. Sets of characters highly variable in a
group are often almost invariable in another, where
different characters become highly variable instead (e.g.,
Farris 1983, p. 15, Sereno 2009), suggesting that the
Mkv model may be inappropriate for morphological
data (Goloboff and Pol 2005, Nyakatura and Bininda-
Emonds 2012). With methods like the discretized gamma
distribution (see details in Felsenstein 2004), the Mkv
model allows for rate heterogeneity among characters,
but this still assumes that the expected changes per
character increase or decrease, together, for faster and
slower evolving characters, along the same branches
of the tree, as illustrated in Figure 1. The patterns of
change in morphological characters would seem instead
to depart strongly from that CM, both at the level of
character partitions, and individual characters. Multiple
(unlinked) partitions (Duchene et al. 2014, Lanfear et al.
2017) allow expected changes per character at a branch to
change separately in each partition, but are rarely used
in morphological data sets and continue requiring both
the commonality assumption within each partition and
a prior identification of the correct partitions.The present study evaluates, for the first time, the
assumption of a CM for morphological data sets.
Bayesian model selection has been applied in some
studies to evaluate differences between morphological494
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Associate Editor: Jeanne SerbAbstract.—Evolutionary inferences require reliable phylogenies. Morphological data have traditionally been analyzed using

maximum parsimony, but recent simulation studies have suggested that Bayesian analyses yield more accurate trees. This

debate is ongoing, in part, because of ambiguity over modes of morphological evolution and a lack of appropriate models.

Here, we investigate phylogenetic methods using two novel simulation models—one in which morphological characters

evolve stochastically along lineages and another in which individuals undergo selection. Both models generate character data

and lineage splitting simultaneously: the resulting trees are an emergent property, rather than a fixed parameter. Standard

consensus methods for Bayesian searches (Mki) yield fewer incorrect nodes and quartets than the standard consensus trees

recovered using equal weighting and implied weighting parsimony searches. Distances between the pool of derived trees

(most parsimonious or posterior distribution) and the true trees—measured using Robinson-Foulds (RF), subtree prune

and regraft (SPR), and tree bisection reconnection (TBR) metrics—demonstrate that this is related to the search strategy and

consensus method of each technique. The amount and structure of homoplasy in character data differ between models.

Morphological coherence, which has previously not been considered in this context, proves to be a more important factor for

phylogenetic accuracy than homoplasy. Selection-based models exhibit relatively lower homoplasy, lower morphological

coherence, and higher inaccuracy in inferred trees. Selection is a dominant driver of morphological evolution, but we

demonstrate that it has a confounding effect on numerous character properties which are fundamental to phylogenetic

inference. We suggest that the current debate should move beyond considerations of parsimony versus Bayesian, toward

identifying modes of morphological evolution and using these to build models for probabilistic search methods. [Bayesian;

evolution; morphology; parsimony; phylogenetics; selection; simulation.]
Phylogenetic trees provide a vital framework for

evolutionary inferences. Consequently, the accuracy of
phylogenetic estimates built using empirical characters
underpins our understanding of evolutionary history.
Morphology was fundamental to the conception and
development of phylogenetic methods (Hennig 1950,
1965). However, in the genomic age, sequence data
have replaced morphology as both the dominant
source of phylogenetic information for estimating tree
topology and the basis of numerical phylogenetic
method development (Lee and Palci 2015; Lartillot et
al. 2016). Molecular characters are more numerous
than morphological ones and their evolution can be
modeled based on empirical observations (Kimura 1980;
Felsenstein 1981; Hasegawa et al. 1985). Nevertheless,
morphology still plays a fundamental role. It is the
only form of data by which we can incorporate fossils,
and thus a deep-time perspective, in phylogenies.
Fossil taxa allow the calibration of molecular clocks
(Donoghue and Yang 2016); offer an independent
test of evolutionary developmental hypotheses (Raff
2007); break long branches, and thus clarify otherwise
intractable relationships (Donoghue et al. 1989; Wiens
and Soltis 2005; Legg et al. 2013); and provide the
only means of understanding diversity and evolution in
deep time (Raup and Sepkoski 1982). For these reasons,
integrating fossils in phylogenies is necessary in order

to derive accurate phylogenies and reconstructions of
character and clade evolution.Morphological data have conventionally been
analyzed using maximum parsimony (Kitching et al.
1998) in which trees that necessitate the fewest character
changes are considered optimal. Characters are either
treated as weighted equally or rescaled in relation to
their homoplasy, for example, using implied weighting
(IW; Goloboff 2013). Likelihood-based models have also
been used to analyze morphological data, primarily
through Bayesian analysis using the Mk model of
character evolution (Lewis 2001). The Mk model is a
k-parameter model, where k is the number of possible
unordered states for a discrete morphological character
(e.g., in an M2 model, characters could have k = 2
states). The model assumes that character state changes
follow a Markov process, and thus the likelihood of
changing from one state to another is determined only
by the current state. The basic Mk model assumes that
all state changes are equally likely and occur at the
same rate, although these assumptions are not always
true (Lewis 2001). Some characters might be gained
or lost much faster or slower than others; as such
numerous refinements have been proposed to account
for asymmetrical evolutionary rates. For instance,
the symmetrical (SYM) and all-rates-different (ARD)
models (Paradis et al. 2004) are two extensions of the
Mk model that can relax this assumption.
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The debacle was written up in Wired MaQazine 
See also #ParsimonyGate: The Perspective of a Reformed 
‘Hardcore’ Cladist by Prosanta Chakrabarty
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In 2016 the journal Cladistics 
published an editorial statin7 
 
“If alternative methods Aive different 
results and the author prefers an 
unparsimonious topoloAy, he or she 
is welcome to present that result, but 
should be prepared to defend it on 
philosophical Arounds”

EditorialThe epistemological paradigm of this journal is par-
simony. There are strong philosophical arguments in
support of parsimony versus other methods of phylo-
genetic inference (e.g. Farris, 1983).The high citation index of Cladistics shows that
the journal is publishing some of the most ground-
breaking empirical and theoretical research on the
history of life, and we remain committed to the publi-
cation of outstanding systematics research. As a com-
munity of scientists, the Willi Hennig Society is always
open to new methods and ideas, and to well-reasoned
criticisms of old ones. However, we do not hold in
special esteem any method solely because it is novel or
purportedly sophisticated.Phylogenetic data sets submitted to this journal
should be analysed using parsimony. If alternative
methods are also used and there is no difference
among the results, the author should defer to the prin-
ciples of the Society and present the tree obtained by
parsimony. Unless there is a pertinent reason to
include multiple trees from alternative methods, a tree
based on parsimony is sufficient as an intelligible,
informative and repeatable hypothesis of relationships,
and articles should not be cluttered with multiple,
often redundant, trees produced from other methods.
If alternative methods give different results and the
author prefers an unparsimonious topology, he or she
is welcome to present that result, but should be pre-
pared to defend it on philosophical grounds.

In keeping with numerous theoretical and empirical
discussions of methodology published in this journal,
we do not consider the hypothetical problem of statis-
tical inconsistency to constitute a philosophical argu-
ment for the rejection of parsimony. All phylogenetic
methods, including parsimony, may produce inconsis-
tent or otherwise inaccurate results for a given data
set. The absence of certain truth represents a philo-
sophical limit of empirical science.Cladistics will publish research based on methods that
are repeatable, clearly articulated and philosophically
sound. We believe these guidelines implement the vision
of Willi Hennig (1965, p. 97), who said, “(i)nvestigation
of the phylogenetic relationship between all existing
species and the expression of the results of this research
in a form which cannot be misunderstood, is the task of
phylogenetic systematics.”
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The 7reatest advanta7e of parsimony is its beautiful simplicity (Yan7, 2014) 

Computationally fast, often produces sensible results and still serves 
practical purposes 

Some ar7ue that parsimony is assumption free. Others ar7ue parsimony does 
make assumptions, even if we don’t know what they are, referred to as 
implicit assumptions 

We are often interested in more than just the topolo7y

Final notes on parsimony
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Model-based approaches on the other hand make explicit assumptions about 
evolutionary processes 

They are also flexible and have many more applications, e.7., rate estimation, 
phylo7enetic datin7 

We will therefore turn our focus to model-based inference
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Re-familiarise yourself with how to read a phylo7enetic tree and 
rootin7 

A Brief History of Computational Phylo7enetics Joe Felsenstein 

Reading
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https://artic.network/how-to-read-a-tree.html
https://slides.filogeneti.ca/include/rooting.html
https://www.youtube.com/watch?v=PcD15i7yzJ8

