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Course introduction
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About this course

The course is taught in two parts:
» Block course, Mon 14.04.25 - Wed 16.04.25, Henke Str.

» Summer semester, Thursdays 14:00-16:00 CET at Henke Str.
Classes will consist of lectures and exercises + 6 weeks project work

All lecture material available via the course website

Blue underlined text — external links



https://phylogenetics-fau.netlify.app
https://en.wikipedia.org/wiki/Phylogenetics

Course objectives

To learn the application of phylogenetic tools in paleobiology

* Tree building * Diversification rates

» Substitution models » Morphological models

» Dating trees » Continuous trait evolution
* Clock models > ...

* Tree models



Course evaluation

“Phylogenetics” is graded together with “Introduction to Statistical Modelling”
(course code: RL-V3 MPP)

Class exercises are mainly in R or the Bayesian phylogenetic software
RevBayes

In addition, we have homework exercises that include videos and reading

Evaluation is based on a written report (info available on the project page)



https://www.r-project.org/about.html
https://revbayes.github.io
https://phylogenetics-fau.netlify.app/projects

Please ask questions!



Objectives

’IO

* Recap ‘tree-thinking’

k> m?3

 Gain an understanding of the

parsimony approach to tree-

building and statistical

Inconsistency

Time tree from Darwin's Origin of Species



What is phylogenetics?

THE PHYLOGENETIC REVOLUTION CONTINUES:

TRIANGLES WERE LONG BELIEVED TO BE
RELATED TO SQUARES, BUT GENETIC

ANALYSIS PROVES THAT THEY ARE

ACTUALLY VERY POINTY CIRCLES.

XKDC



https://www.explainxkcd.com/wiki/index.php/3010:_Geometriphylogenetics

Phylogenetics

Phylogenetics aims to reconstruct the phylogeny of individual samples based on
molecular or morphological character data

A phylogeny captures part of evolutionary history that is otherwise not directly
observable

Phylodynamics aims to quantify the processes that gave rise to the tree,
e.g., speciation, extinction

Explore the tree of life using the Open Tree of Life tool, currently inc. 2,384,572 tips
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https://tree.opentreeoflife.org

 populations Data
Time

* Species « DNA

* Viruses » morphology
» cells * words

* languages

In this course we mainly
focus on trees that include
one representative per
species

| ) | | / Scots poem - also the BEAST? logo!



https://blogs.baruch.cuny.edu/poemofthemonth/2011/11/17/to-a-mouse/
https://www.beast2.org

Research topics in phylogenetics

Data
collection
| I
Empirical Exploring model Testing Implementing Deriving
analysis assumptions models models models
. This course!
o ¢ ¢ ¢ ¢

Applications Theory
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Nothing in biology makes sense except in the
I I gh t Of eVOI U tl Ol - Theodosius Dobzhansky (1973)

Nothing in evolution makes sense except when
seen in the light of phylogeny - say savage (1997)


https://en.wikipedia.org/wiki/Nothing_in_Biology_Makes_Sense_Except_in_the_Light_of_Evolution

Trees in paleobiology



Tsagkogeorga et al. (2015)

What can we learn from trees?

(1)

(ii)

(iv)

V)

(iii)

Erinaceus europaeus
Sorex araneus

Myotis lucifugus
Pteropus vampyrus
Felis catus

Canis familiaris
Ailuropoda melanoleuca
Mustela putorius furo
Equus caballus
Vicugna pacos

Sus scrofa

Bos taurus

Ovis aries

Hippopotamus amphibius

Balaenoptera acutorostrata
Megaptera novaeangliae
Balaenoptera physalus
Physeter macrocephalus
Lipotes vexillifer
Neophocaena phocaenoides
Orcinus orca

Sousa chinensis

Tursiops truncatus
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How are our favourite species
related?

Does the phylogeny support
the taxonomy?

What was the sequence of
character evolution?
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https://royalsocietypublishing.org/doi/10.1098/rsos.150156

Topology
transforms our
understanding of
character evolution

Porifera-sister tree
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Bilateria

Neural system
Muscles

Cnidaria
Neural system
Muscles

Placozoa
No neurons

No muscles

Ctenophora

Neural system
Muscles

Porifera

No neurons
No muscles

Ctenophora-sister tree
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Bilateria
Neural system
Muscles

Cnidaria
Neural system
Muscles

Placozoa
No neurons
No muscles

Porifera

No neurons
No muscles

Ctenophora

Neural system
Muscles

Telford 2016
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https://www.nature.com/articles/529286a
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What can we learn
from trees?

» Evolutionary relationships

15



Indian cichlids

Malagasy and

|

What can we learn o~
from trees?
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Image adapted from Friedmann et al. (2013)



https://royalsocietypublishing.org/doi/full/10.1098/rspb.2013.1733

Where do we begin?



Some basic terms

MRCA = most
recent common
ancestor

A
B .
@ internal nodesor MRCAs
C
@ tipsorleaves
root D — branches or edges
E

branch lengths = genetic distance or time

How to read a phylogenetic tree
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https://artic.network/how-to-read-a-tree.html

Tip look for the

The direction of time
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Computer science,maths Geology Evolutionary biology



Image source Tracy Heath

Two types of trees

Unrooted vs. rooted trees

Branch lengths in
both trees
represents
genetic distance

Trees can be
rooted using an
outgroup

A rooted tree
shows the
direction of time
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Phylogenies are unrooted by default, because phylogenetic data don't
directly contain information about the direction of time

21



?naatte:ix vertebrae amniotic egg Sijﬁsm gigg;gj ar feathers
frog 0 0 0 0
mammal ‘ 0 0 0
lizard ‘ 0 0
crocodile 1 0
Tree polarity and rooting
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Slides adapted from Philip Donoghue

| ~> GAIN feathers
. R GAIN mandibular fenestra
NI GAIN diapsid skul

S GAIN amniotic egg
/S GAIN vertebrae
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data amniotic egg | diapsid mandibular
matrix vertebrae skull fenestra teathers
frog 0 0 0 0
mammal ‘ 0 0 0
lizard ‘ 0 0
crocodile 1 0
P y $ L . N
S & & & L
DR SR ) 9
LOSS amniotic egg AN ‘ |
LOSS diapsid skull ~ HN¢
LOSS mandibular fenestra N ’
LOSS feathers ' ¢

Slides adapted from Philip Donoghue

2NN
GAIN vertebrae *
GAIN feathers, GAIN vertebrae, GAIN diapsid skull,
GAIN mandibular fenestra, GAIN amniotic egg
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outgroup

We have to find a way of breaking one of the branches in two, where the break
represents the oldest point in our tree

The most common approach is to use an outgroup — a taxon that we know is more
distantly related to everything else
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Image source Tracy Heath

Branch lengths = genetic or time

Tip look at the
axis

Trees show the relationships among extant (living) bear species

0.03 base substitutions/site

Oligocene

Pleis
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Ballusia elmensis

O
Ursidae

crown group

Dated tree showing the ursinacl

relationship of extant and fossil
bear species

Plithocyon teilhardi M
l\‘ 1

Ursavus brevirhinus

Kretzoiarctos beatrix
Miomaci panonnicum

Agriarctos depereti

Canis lupus

“Ursavus” primaevus

Indarctos atticus m

Ailurarctos lufengensis

Aurorarctos tirawa

—9 _

Arctothe

“Ursavus” tedfordi JR

Ailuropoda melanoleuca

gen. et sp. nov. ﬁ R&

“Ursavus” ehrenbergi

“Ursavus” sylvestris

Plionarctos edensis
Plionarctos harroldorum
Arctodus simus

riini

Tremarctos floridanus

Tremarctos ornatus m

Ursus boeckhi

Ursus minimus

. . Ursus thibetanus
Ursini _
— Ursus ursinus &
—— Ursus malayanus m
Ursus americanus
Ursus etruscus
Ursus deningeri m
Ursus spelaeus
Ursus arctos .
Ursus maritimus
; 2 o b S
= = o
Paleogene Neogene Quat.
Image adapted from Jiangzuo and Flynn. (2020)
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https://doi.org/10.1016/j.isci.2020.101235

Character Lamprey Antelope Bald eagle Alligator Sea bass
Lungs 0 1 1 1 0
Jaws 0 1 1 ] ]
Feathers 0 0 ] 0 0
Gizzard 0 0 ] ] 0
Fur 0 T 0 0 0

Source Khan Academy

» What do you think the correct rooted tree should be?

Write down your logic

- How many possible unrooted or rooted trees are there?

‘0" and 1" represent
absence or presence

27


https://en.wikipedia.org/wiki/Lamprey
https://en.wikipedia.org/wiki/Antelope
https://en.wikipedia.org/wiki/Bald_eagle
https://en.wikipedia.org/wiki/Alligator
https://en.wikipedia.org/wiki/Sea_bass
https://www.khanacademy.org/science/biology/her/tree-of-life/a/building-an-evolutionary-tree

There are a huge number of possible trees!

ti ted t ted t
ntps UNrooted trees rooted rees Number of branches, n
3 1 3
unrooted tree
A 3 15 2n-3
rooted tree
6 105 945 2n-2
7 045 10395
g 10395 135135
9 135135 2027025

10 2027025 34459425

See wiki for more on where these numbers come from



https://en.wikipedia.org/wiki/Phylogenetic_tree#Enumerating_trees

Source Khan Academy
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https://www.khanacademy.org/science/biology/her/tree-of-life/a/building-an-evolutionary-tree

» Write down your logic
— Most people intuitively assume the tree with the fewest changes is correct

— This approach to tree building is called maximum parsimony

30



Image source Tracy Heath

How do we find the ‘best’ tree?

better

worse

31



It depends how you measure ‘best’

Method Criterion (tree score)

Maximum parsimony Minimum number of changes

Likelihood score (probability), optimised over branch lengths
and model parameters

Posterior probability, integrating over branch lengths and

Bayesian inference
model parameters

Both maximum likelihood and Bayesian inference are model-based approaches

Note these are not the only approaches to tree-building but they are the most widely used

32



Maximum parsimony

(also sometimes known as the minimum evolution method)



Maximum
parsimony

The maximum parsimony tree is
the unrooted tree with the lowest
parsimony score

The parsimony score of a tree is
defined as the minimum number
of changes required to explain the
data summed across characters

Maximum parsimony first described in
Edwards and Cavalli-Sforza (1964)
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Phylogeny of fossil horses. It was (I think) the first tree
constructed using parsimony and discrete morphological
characters by Camin and Sokal (1965) — this study
popularised the use of parsimony among systematists
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https://www.cambridge.org/core/books/abs/phylogenetic-inference-selection-theory-and-history-of-science/reconstruction-of-evolutionary-trees/4348CEE7E5B8AF9F74825899DC834D1F
https://www.jstor.org/stable/2406441

Source Khan Academy
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https://www.khanacademy.org/science/biology/her/tree-of-life/a/building-an-evolutionary-tree

Maximum parsimony

Parsimony can not identify the location of the root, so we can use an
outgroup to root the tree

There can be more than one tree with the same parsimony score

Parsimony does not make explicit assumptions about the evolutionary
process

Maximum parsimony can only be used to estimate tree topology

36
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Data from Dunn (2016). See also Dunn et al. (2021)
Phylogenetic affinity of the enigmatic Charnia Differentiating frond , __Inflating frond
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https://phylogenetics-fau.netlify.app/exercise-01
https://research-information.bris.ac.uk/en/studentTheses/growth-and-development-in-the-ediacaran-macrobiota
https://www.science.org/doi/full/10.1126/sciadv.abe0291
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https://www.charnwoodforest.org/discovering-charnia/

ENEXUS Initiates the nexus block

[Matrix modified from Dunn (2016) ]

BEGIN DATA;

DIMENSIONS NTAX=10 NCHAR=117;

FORMAT DATATYPE = STANDARD SYMBOLS= " 0 1 2 3" MISSING=? GAP=- ;

MATRIX

Charnia 0021722122222272222022721°221120172222222°220-2-2222272727
Laccarila 110200100000000000-000--00--00---00--0-====——- 000-
Capsaspora 001011-00-===—- 000-00---00-====——- O-——=====—- 0-0-
Monosiga 001000-11-—-———- 000-00---00-====——- O-————=- 0-0-
Sycon 00110011111111111110100110--0000000000----0---000-
Amphimedon 00110011111111111121100110--00000000000---0--=-000-
Trichoplax 001100111111100000-0000210--01111110000--00---000-
Mnemiopsis 001100111111100000-0011211200110010111121110011110
Nematostella 00110011111110000000112111001100101111111101111111
Hydra 001100111111100000-0011211100110010111111110111111

END;



#NEXUS :
Comments go in square brackets

[Matrix modified from Dunn (2016) ]

Great for keeping track of data sources
BEGIN DATA;

DIMENSIONS NTAX=10 NCHAR=117;

FORMAT DATATYPE = STANDARD SYMBOLS= " 0 1 2 3" MISSING=? GAP=- ;

MATRIX

Charnia 0021722122222272222022721°221120172222222°220-2-2222272727
Laccarila 110200100000000000-000--00--00---00--0-====——- 000-
Capsaspora 001011-00-===—- 000-00---00-====——- O-——=====—- 0-0-
Monosiga 001000-11-—-———- 000-00---00-====——- O-————=- 0-0-
Sycon 00110011111111111110100110--0000000000----0---000-
Amphimedon 00110011111111111121100110--00000000000---0--=-000-
Trichoplax 001100111111100000-0000210--01111110000--00---000-
Mnemiopsis 001100111111100000-0011211200110010111121110011110
Nematostella 00110011111110000000112111001100101111111101111111
Hydra 001100111111100000-0011211100110010111111110111111

END;



INEXUS

[Matrix modified from Dunn (2016) ]

BEGIN DATA; Initiates the data block

DIMENSIONS NTAX=10 NCHAR=117;

FORMAT DATATYPE = STANDARD SYMBOLS= " 0 1 2 3" MISSING=? GAP=- ;

MATRIX

Charnia 0021722122?222272222022721°221120172?222°222°220-2-222227277
Laccaria 110200100000000000-000--00--00---00--0-====——- 000-
Capsaspora 001011-00-===—- 000-00--=-00-====——- O-—=====—- 0-0-
Monosiga 001000-11-—-———- 000-00---00-====——- O 0-0-
Sycon 00110011111111111110100110--0000000000----0---000-
Amphimedon 00110011111111111121100110--00000000000---0---000-
Trichoplax 001100111111100000-0000210--01111110000--00---000-
Mnemiopsis 001100111111100000-0011211200110010111121110011110
Nematostella 00110011111110000000112111001100101111111101111111
Hydra 001100111111100000-0011211100110010111111110111111

END;



INEXUS

[Matrix modified from Dunn (2016) ]

BEGIN DATA;

DIMENSIONS NTAX=10 NCHAR=117;

FORMAT DATATYPE = STANDARD SYMBOLS= " 0 1 2 3" MISSING=? GAP=-
MATRIX
Charnia 0072172721 7272727222222207272°21221120172?2?2?272?22220-2-2272727272727
Laccarila 110?00100000000000-000--00--00---00--0—-—==———- 000-
Capsaspora 001011-00-==——- 000-00---00-——===—— O-———==————- 0-0-
Monosiga 001000-11-—-=-——- 000-00---00-——==——- O-——————————- 0-0-
Sycon 00110011111111111110100110--0000000000-===-0-==-000-
Amphimedon 00110011111111111121100110--00000000000-==-0-==-000-
Trichoplax 001100111111100000-0000210--01111110000--00-=-=-000-
Mnemiopsis 001100111111100000-00112112001100101111211100111160
Nematostella 00110011111110000000112111001100101111111101111111
Hydra 001100111111100000-0011211100110010111111110111111
END;

°
4

Number of taxa and
characters in the matrix
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INEXUS

[Matrix modified from Dunn (2016) ]

BEGIN DATA;

DIMENSIONS NTAX=10 NCHAR=117;

FORMAT DATATYPE = STANDARD SYMBOLS= " 0 1 2 3" MISSING=? GAP=-
MATRIX
Charnia 0072172721 7272727222222207272°21221120172?2?2?272?22220-2-2272727272727
Laccarila 110?00100000000000-000--00--00---00--0—-—==———- 000-
Capsaspora 001011-00-==——- 000-00---00-——===—— O-———==————- 0-0-
Monosiga 001000-11-—-=-——- 000-00---00-——==——- O-——————————- 0-0-
Sycon 00110011111111111110100110--0000000000-===-0-==-000-
Amphimedon 00110011111111111121100110--00000000000-==-0-==-000-
Trichoplax 001100111111100000-0000210--01111110000--00-=-=-000-
Mnemiopsis 001100111111100000-00112112001100101111211100111160
Nematostella 00110011111110000000112111001100101111111101111111
Hydra 001100111111100000-0011211100110010111111110111111
END;

o
4

Details about the data
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INEXUS

[Matrix modified from Dunn (2016) ]

BEGIN DATA;

DIMENSIONS NTAX=10 NCHAR=117;

FORMAT DATATYPE = STANDARD SYMBOLS= " 0 1 2 3" MISSING=? GAP=-
MATRIX
Charnia 0021722122?222272222022721°221120172?222°222°220-2-222227277
Laccaria 110200100000000000-000--00--00---00--0-====——- 000-
Capsaspora 001011-00-===—- 000-00--=-00-====——- O-—=====—- 0-0-
Monosiga 001000-11-—-———- 000-00---00-====——- O 0-0-
Sycon 00110011111111111110100110--0000000000----0---000-
Amphimedon 00110011111111111121100110--00000000000---0---000-
Trichoplax 001100111111100000-0000210--01111110000--00---000-
Mnemiopsis 001100111111100000-0011211200110010111121110011110
Nematostella 00110011111110000000112111001100101111111101111111
Hydra 001100111111100000-0011211100110010111111110111111
END;

°
4

Initiates the data matrix
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#NEXUS

[Matrix modified from Dunn (20106) ]

BEGIN DATA;

DIMENSIONS

NTAX=10 NCHAR=117;

FORMAT DATATYPE = STANDARD SYMBOLS= "

MATRIX

END;

01 2 3"

MISSING=? GAP=-

°
4

Phylogenetic data matrix

Taxon names left, characters
right after tabs or spaces
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INEXUS

[Matrix modified from Dunn (2016) ]

BEGIN DATA;

DIMENSIONS NTAX=10 NCHAR=117;

FORMAT DATATYPE = STANDARD SYMBOLS= " 0 1 2 3" MISSING=? GAP=-
MATRIX
Charnia 0072172721 7272727222222207272°21221120172?2?2?272?22220-2-2272727272727
Laccarila 110?00100000000000-000--00--00---00--0—-—==———- 000-
Capsaspora 001011-00-==——- 000-00---00-——===—— O-———==————- 0-0-
Monosiga 001000-11-—-=-——- 000-00---00-——==——- O-——————————- 0-0-
Sycon 00110011111111111110100110--0000000000-===-0-==-000-
Amphimedon 00110011111111111121100110--00000000000-==-0-==-000-
Trichoplax 001100111111100000-0000210--01111110000--00-=-=-000-
Mnemiopsis 001100111111100000-00112112001100101111211100111160
Nematostella 00110011111110000000112111001100101111111101111111
Hydra 001100111111100000-0011211100110010111111110111111
END;

°
4

Initiates the end of the data matrix
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INEXUS

[Matrix modified from Dunn (2016) ]

BEGIN DATA;

DIMENSIONS NTAX=10 NCHAR=117;

FORMAT DATATYPE = STANDARD SYMBOLS= " 0 1 2 3" MISSING=? GAP=-
MATRIX
Charnia 0072172721 7272727222222207272°21221120172?2?2?272?22220-2-2272727272727
Laccarila 110?00100000000000-000--00--00---00--0—-—==———- 000-
Capsaspora 001011-00-==——- 000-00---00-——===—— O-———==————- 0-0-
Monosiga 001000-11-—-=-——- 000-00---00-——==——- O-——————————- 0-0-
Sycon 00110011111111111110100110--0000000000-===-0-==-000-
Amphimedon 00110011111111111121100110--00000000000-==-0-==-000-
Trichoplax 001100111111100000-0000210--01111110000--00-=-=-000-
Mnemiopsis 001100111111100000-00112112001100101111211100111160
Nematostella 00110011111110000000112111001100101111111101111111
Hydra 001100111111100000-0011211100110010111111110111111
END;

°
4

Initiates the end of the nexus block
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Newick
format

Named after Newick's Lobster House, North Carolina!

(frog, (mammal, (lizard, (crocodile, bird)))):



https://en.wikipedia.org/wiki/Newick_format

Statistical inconsistency

The following slides are adapted from Tracy Heath (in turn adapted from Mark Holder)

49



Statistical consistency

ldeally, we want an inference method to return the correct answer if we
provide enough data

An estimator is statistically consistent if it is guaranteed to get the correct
answer with an infinite amount of data

It has been demonstrated that in some scenarios, parsimony is statistically
inconsistent. The issue is known as long branch attraction
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Convergent evolution

A trait that is found in two species, but not
in their common ancestor is an example of
homoplasy

Bird, Pterosaur (extinct),

| fruit bat: 3 different
We ﬂnd WldeSpI‘ead hOmOplasy 1N bOth vertebrates independenﬂy

morphological and molecular datasets lightened bones and
transformed hands into

UOITONPOJIUN UB TUONINJOAT JUSDISATO]) 924N0S 9

wings
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https://convergentevolution.wordpress.com/2015/04/16/hello-world/

Convergence and parsimony

Hypothetical tree showing multiple
transitions at the same character

T1

T2

T3

Parsimony will always favour the tree
with the smallest number of changes

The method does not account for
multiple transitions (or “hits"), e.g.,
0—-1-0

We can only invoke convergent
evolution ad hoc after inference
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| ong branch attraction

Say we have the following tree, with 2 long and 2 short branches

11 T3
1.0 11

o1 12
Branch lengths 1.0 T3
represent the 001 T4
probability of 12 T4 The rooted version
change along of the same tree
that branch
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| ong branch attraction

0 (T1) (T3) 1 1(T1) (T3) 0

Q-Q/\ 0.0 0'0;
(T2) O 1 (T4)
. A transition somewhere Subsequent transitions
SOme time along the branch that along the branches
in the past separates (T1, T2) and eading to T1 and T3
(T3, T4)




Long branch attraction

Parsimony is almost guaranteed to
get this tree wrong

And more data makes this problem
worse, meaning this approach is
statistically inconsistent

This issue has been thoroughly
characterised for molecular data

Felsenstein (1978)

Felsenstein (2004), Inferring Phylogenies

T2

T4

/

True tree

T1 T3 T4

T1
T3

Parsimony tree \
T2
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https://www.jstor.org/stable/2412923

| ong branch attraction

T1

Branch lengths T2 T4
represent the

probability (p, q)
of change along

that branch

Felsenstein (2004), Inferring Phylogenies

T3

p'<ql-9)

CONSISTENT

0 0.1 0.2 0.3 0.4 0.5

q

The area in grey, is the area of parameter space where
you are almost guaranteed to recover the wrong tree,
with increasing certainty the more data you have
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https://www.jstor.org/stable/3070852

Correct tree

A classic case of LBA ’
s

arthropods, and chordates was
misunderstood for a long time

—
The relationship between nematodes, / \\

- Ecdysozoa*

¢ [nferred tree
(arthropods, nematodes), vertebrates east | @y
.

Mgy i\
I-----“
| Mo
. .
0" 1

| /
\\/\/ / A

(arthropods, vertebrates), nematodes

nematodes

chordates

- Coelomata \ / ‘
arthropods

*widely accepted today, Image: Telford et al. (2005)
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data. However, it has been

Introduction or parsimony—informative characters (i€ characters that can be

used to discriminate among different tree topologics under the

For many decades, parsimony methods have been the most
widely used approaches for estimation of phylogeny from discrete
pbenotypic data, despite the availability of likelibood—based
methods for phylogenetic analysis. Maximum likelihood and
Bayesian methods are commonly used in data sets combining
molecules and morphology [1-5], but are used less frequently mn
morphology—only data sets (6] As such, the officacy of these
methods under 2 range of conditions is 1ot well-explored. In
particular, the conditions that are investigated in most paleonto”
logical studies (many characters missing across sampled taxa, and
rate heterogeneity amons different sampled characters) lead some
investigators t0 raise questions about the applicability of model-

counteract this bias, Lewis [10)

statistical consistency [1 5].

based approaches under these conditions [6-9]-

At the present the most widely implemented (in both pure
likelihood and Baycsian contexts) model for estimating phyloge-
netic trees {rom discrete phenotypic data is the Mk model
proposed by Lewis [10]. This model is 2 generalization of the 1969
Jukes-Gantor model of nucleotide sequence evolution [111- The
Mk model assumes a Markov process for character change,
allowing for mu tiple character-state changes along 2 single
branch. The pro ability of change in this model is symmetrical;
in other words, the probability of changing from one state tO
another is the same as change in the reverse direction. This
agsumption can be relaxed M Bayesian implementations through
the use of 2 hyperprior allowing variable change probabilities
among states [12-141. As many morphologists collect only variable

models [18], 2 distribution of

pLOS ONE | www.plosone.org 1 October 2014

evolution within a data set, as

evolution and the amount of tim
the estimated branch lengths in the tree; [19)). In contrast, high
levels of rate heterogeneity among characters can be more

parsimony criterion), the distribution of characters collected does
not reflect the distribution of all observable characters. This
sampling bias can lead to poor estimation of the rate of character

well as inflated estimates of

character change along branches of the estimated trec. To

introduced versions of the Mk

model that correct for biases in character collection. These
versions were subsequently shown to have the desirable quality of

Sampled characters within data sets typically evolve under
different rates, developmental processes, and modes of evolution
[7,l6,l7]. Although heterogeneity in the underlying evolutionary
processes ¢an present challenges to the application of evolutionary

different evolutionary rates of

characters can be helpful for resolving branches at different levels
in the tree. Extremely labile characters, for example, arc useful for
resolving recently diverged lineages, whereas slowly evolving
characters may be more useful for resolving deep divergences 1
the tree. Likelihood—based methods can benefit from this
heterogeneity by accounting  for different rates of character
¢ available for change (based on

problematic for parsimony methods, especially if all character
changes ar¢ weighted equally [20].
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In 2016 the journal Cladistics
published an editorial stating

| | nt
“If alternative methods give differe
results and the author prefers an

he
unparsimonious topology, he orlf c
is welcome to present that result,

should be prepared to defend it on
philosophical grounds

t
‘Hardcore’ Cladist by Prosanta Chakrabarty

(?ladistics

WILEY-

BLACKWELL Cladistics 32 (201¢) | _
10.1111/c1a.12148
Editoria]

The CpPistemologijca] paradigm of thjg Journal is par. In keeping With numeroyg theoretica] and empiricg]
SImony. There are strong phﬂosophlcal arguments jp discussiong of methodology published ip t IS journa]
Support of parsimony vergy; other methods of phylo- we do not consider the hypothetica] problem of Statis
genetic inference (e.g. Farrig 1983) tical Inconsistency tq constitute 5 phllosophlcal argu

The high Citation index of Cladisticg shows that ment for the rejection of Parsimony. Aj phylogenetic
the journa] is pubhshmg Some of the most ground- methods, Including parsimony, may prodyce Inconsijs-

reaking €mpirical apg theoretica] fesearch on the tent or otherwise Maccurate regy|(s for a given data
history of life, and we femain committeq to the publ;- set. The absence of certain truth represents g philo-
cation of Outstanding Systematicg research. As g com- sophical limjt of empirica] science
munity of Scientists, the Willi Hennig Society is always Cladisticy will publish fesearch based op methods that
open to new methods ang Ideas, and o well-reasoned are repeatable, clearly articulated apq phﬂosophlcaHy
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https://www.wired.com/2016/02/twitter-nerd-fight-reveals-a-long-bizarre-scientific-feud/
https://www.prosanta.org/aguidetoacademia/2016/02/parsiomygate-perspective-of-reformed.html
https://www.prosanta.org/aguidetoacademia/2016/02/parsiomygate-perspective-of-reformed.html

Final notes on parsimony

The greatest advantage of parsimony is its beautiful simplicity (Yang, 2014)

Computationally fast, often produces sensible results and still serves
practical purposes

Some argue that parsimony is assumption free. Others argue parsimony does
make assumptions, even if we don't know what they are, referred to as
implicit assumptions

We are often interested in more than just the topology
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Model-based approaches on the other hand make explicit assumptions about
evolutionary processes

They are also flexible and have many more applications, e.g., rate estimation,
phylogenetic dating

We will therefore turn our focus to model-based inference
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Reading

ii Re-familiarise yourself with how to read a phylogenetic tree and
I rooting

@) A Brief History of Computational Phylogenetics Joe Felsenstein
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